Skip to main content
Search

* All fields must be filled out.

Send message!
Search

COLLECTION OF EXPERIMENTAL PUBLICATIONS OF ONCOTHERMIA

Oncotherm is keen to prepare studies and publish those in relevant scientific and medical literature. Our philosophy covers a complex interation between the various levels of research and applications. The basic researches (theoretical considerations and in-silico models) are followed by the laboratory experiments in-vitro and in-vivo completed with preclinical and afterwards clinical studies. All steps are interacting not only with the next forward, but could affect the previous research steps for corrections, modifications and further developments. This complex research scheme allows us being ready to absorb the latest results from the worldwide literature and making own development on the available top of the state-of-art. Herewith we demonstrate our actual results with our publications from the laboratories until the clinical applications. Many PubMed registered publications are in harmony with the topics whics are too technical or simple sumbitted to the not NCI registered publishers.

To be active for the training of our oncotherm community, we issue informative newsletters each month and we publish our Oncothermia Journal (ISSN 2191-6438) three times a year [[1]], sharing the hot topics in the oncothermia research field with our community members and with other interested researchers, too. There are quite a large number of publications in the journal which can be found on its website.

Oncothermia is the special method of Oncotherm Kft., became the trade-name of the treatment modality of modulated electro-hyperthermia (mEHT), and is nowadays mentioned as nanothermia in the relevant literature.

Experimental studies

 

Apoptosis

  • The presence of gold nanoparticles in cells associated with the cell-killing effect of modulated electro-hyperthermia [[2]],
  • Electro-hyperthermia inhibits glioma tumorigenicity through the induction of E2F1-mediated apoptosis [[3]],
  • Programmed cell death induced by modulated electro-hyperthermia [[4]],
  • A modulált rádiófrekvenciás (RF) hyperthermia (oncothermia) apoptózis-indukáló hatása immunhiányos egér xenograft tumorokban [The apoptosis-inducing effect of modulated radio-frequency (RF) hyperthermia (oncothermia) on immun deficient mouse xenograft tumors] [[5]],
  • Klinikai vizsgálatok és evidenciák a modulált vezetéses rádiófrekvenciás hyperthermia (oncothermia) alkalmazásában [Clinical trials and evidences of the application of modulated radio-frequency hyperthermia] [[6]],
  • Modulated electrohyperthermia causes caspase independent programmed cell death in HT29 colon cancer xenografts [[7]],
  • Modulated electro-hyperthermia induced programmed cell death in HT29 colorectal carcinoma xenograft [[8]],
  • DNA fragmentation-driven tumor cell degradation induced by modulated electro-hyperthermia [[9]],

 

Apoptosis, DAMP, ICD  

  • DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia [[10]],
  • Upregulation of heat shock proteins and the promotion of damage-associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia [[11]],

 

Abscopal effect

  • Modulated electro-hyperthermia enhances dendritic cell therapy through an abscopal effect in mice [[12]],
  • Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy [[13]],
  • Modulated electro-hyperthermia induced loco-regional and systemic tumor destruction in colorectal cancer allografts [[14]],

 

Strong synergy

  • Strong synergy of heat and modulated electro- magnetic field in tumor cell killing, Study of HT29 xenograft tumors in a nude mice model [[15]],

 

Human lymphoma U937 cells

  • Comparison of biological effects of modulated
    electro-hyperthermia and conventional heat treatment in
    human lymphoma U937 cells [[16]],

Septin

  • Electro-hyperthermia up-regulates tumour suppressor Septin 4 to induce apoptotic cell death in hepatocellular carcinoma [[17]],

 

In vitro comparison

  • In vitro comparison of conventional hyperthermia and modulated electro-hyperthermia [[18]],

 

Preclinical

  • First in vitro evidence of modulated electro-hyperthermia treatment performance in combination with megavoltage radiation by clonogenic assay [[19]],
  • Iron-dextran as a thermosensitizer in radiofrequency hyperthermia for cancer treatment [[20]],
  • Modulated electro-hyperthermia induced p53 driven apoptosis and cell cycle arrest additively support doxorubicin chemotherapy of colorectal cancer in vitro [[21]],
  • Quantitative estimation of the equivalent radiation dose escalation using radiofrequency hyperthermia in mouse xenograft models of human lung cancer [[22]],
  • Modulated electro-hyperthermia-enhanced liposomal drug uptake by cancer cells [[23]],
  • Temperature increase induced by modulated electrohyperthermia (oncothermia®) in the anesthetized pig liver [[24]],
  • Oncothermia research at preclinical level [[25]],
  • Report of the pilot-study done for the proposed investigation on the possible synergic effect between high dose ascorbic acid application and oncothermia treatment [[26]],
  • Oncothermia basic research at in vivo level. The first results in Japan [[27]],
  • Diagnostic and therapeutic aspects of canine malignant melanoma. Part 2. Own experiences [[28]],
  • Transferrin as a thermosensitizer in radiofrequency hyperthermia for cancer treatment [[29]],

 

Temperature

  • Temperature mapping and thermal dose calculation in combined radiation therapy and 13.56 MHz radiofrequency hyperthermia for tumor treatment [[30]],
  • Messung der Temperaturverteilung am Modell der nicht perfundierten Schweineleber bei lokaler Hyperthermie mit Kurzwellen mit 13,56 MHz [[31]],
  • Deep temperature measurements in oncothermia processes [[32]],

Protein kinase signaling

  • Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage [[33]],

mRNA

  • Early changes in mRNA and protein expression related to cancer treatment by modulated electro-hyperthermia [[34]],

Modulation

  • Modulation effect in oncothermia [[35]],
  • Similarities of modulation by temperature and by electric field [[36]],

Nanoheating

  • Nanoheating without Artificial Nanoparticles Part II. Experimental support of the nanoheating concept of the modulated electro-hyperthermia method, using U937 cell suspension model [[37]],

Monotherapy

  • Cases that respond to oncothermia monotherapy [[38]],

Chondrocyte biosynthesis

  • Electric field regulation of chondrocyte biosynthesis in agarose gel constructs [[39]]

 

Theoretical & In silico studies

 

Hypoxia

  • Hyperthermia and hypoxia: new developments in anticancer chemotherapy [[40]],

Field effects

  • Bioelectromagnetic paradigm of cancer treatment – Modulated electro-hyperthermia (mEHT) [[41]],
  • Do Field-Free Electromagnetic Potentials Play a Role in Biology? [[42]],
  • Effect of Curl-Free Potentials on Water [[43]],
  • Axial vector interaction with bio-systems [[44]],
  • Oncothermia: Complex therapy by EM and fractal physiology [[45]],

From lab

  • Oncothermia treatment of cancer: from the laboratory to clinic [[46]],

Oncothermia general

  • Hyperthermia versus oncothermia: Cellular effects in complementary cancer therapy [[47]],
  • Oncothermia: A new paradigm and promising method in cancer therapies [[48]],
  • A brief overview of hyperthermia in cancer treatment [[49]],
  • Oncothermia - Nano-heating paradigm [[50]],

Thermal limit

  • On the thermal noise limit of cellular membranes [[51]],

Fractal noise

  • Pink noise behaviour of the bio-systems [[52]],
  • Bio-response to White Noise Excitation [[53]],
  • Internal charge redistribution and currents in cancerous lesions [[54]],

Instability

  • An electrically driven instability: the living-state (Does the room temperature superconductivity exist?) [[55]],

Membrane effects

  • New Theoretical Treatment of Ion Resonance Biological Phenomena [[56]],
  • An energy analysis of extracellular hyperthermia [[57]],
  • Water states in living systems. I. Structural aspects [[58]],

Dose

  • Dose concept of oncological hyperthermia: Heat-equation considering the cell destruction [[59]],
  • Hyperthermia, a Modality in the Wings [[60]],
  • Heating, efficacy and dose of local hyperthermia [[61]],
  • Generalization of the thermal dose of hyperthermia in oncology [[62]],
  • Critical analysis of the thermodynamics of reaction kinetics [[63]],
  • Connections between the specific absorption rate and the local temperature [[64]],
  • Hyperthermia dosing and depth of effect [[65]],
  • Oncological hyperthermia: The correct dosing in clinical applications [[66]],

Water-structure

  • Modelling of the dissipative structure of water [[67]],
  • A synergetic representation for the double-structure model of liquid water [[68]],
  • Two-structure model of liquid water [[69]],
  • Self-organizing processes and dissipative structure formation in the non-crystalline materials [[70]],

Cell-structures

  • Topological Correlation in amorphous structures [[71]],
  • Appearance of collectivity in two-dimensional cellular structures [[72]],
  • From Random Cellular Structure to the Honeycomb Pattern [[73]],
  • From two dimensional cellular structures to the honeycomb pattern [[74]],
  • Háromdimenziós sejtrendszerek topológiai összefüggései [[75]],
  • Topological aspects of ordering: Proceeding of the 7th Seminar of IFHT Heat Treatment Surface Engineering of Light Alloys [[76]],
  • Connections between Warburg’s and Szentgyorgyi’s Approach about the Causes of Cancer [[77]],
  • Reorganization of the cytoskeleton [[78]],
  • Why modulated electrohyperthermia (mEHT) destroys the rouleaux formation of erythrocytes? [[79]],
  • Bystander Effect of Oncothermia [[80]],

Electromagnetic radiation

  • A mobiltelefonokból származó elektromágneses expozíció alakulása 900/1800/2100 MHz frekvencián [[81]],
  • Assessment of electromagnetically treated wheat kernel at 120Hz using the FDTD method [[82]],
  • Metal-framed spectacles and implants and specific absorption rate among adults and children using mobile phones at 900/1800/2100 MHz [[83]],

Blood-flow

  • Negative impedance interval of blood flow in capillary bed [[84]],
  • Non-Newtonian analysis of blood-flow [[85]],
  • Hyperthermic radiology. Why to combine? [[86]],
  • Non-Mechanical Energy Transfer of Electrically Neutral Electrolytes [[87]],

Front-page demo

  • Front page illustration of Forum Medizine [[88]],

Quantum biology

  • Onsagerian quantum mechanics [[89]],
  • Nonequilibrium thermodynamic and quantum model of a damped oscillator [[90]],
  • Rosen-Chambers variation theory of linearly-damped classic and quantum oscillator [[91]],

Review

  • Thermal and nonthermal effects of radiofrequency on living state and applications as an adjuvant with radiation therapy [[92]],
  • Challenges and Solutions in Oncological Hyperthermia [[93]],
  • Personalised dosing of hyperthermia [[94]],
  • Hyperthermie in der Tumortherapie [[95]],
  • Too hot for cancer [[96]],
  • Hyperthermia in oncology: A promising new method? [[97]],
  • Hyperthermia today: electric energy, a new opportunity in cancer treatment [[98]],
  • Hyperthermie in der Tumortherapie [[99]],
  • Stellenwert der Hyperthermie in der Onkotherapie [[100]],
  • Formen der Hyperthermie und klinische Ergebnisse [[101]],
  • "Quo vadis" oncologic hyperthermia? [[102]],
  • Critical Analysis Of Electromagnetic Hyperthermia Randomized Trials: Dubious Effect And Multiple Biases [[103]],
  • Essentials of oncothermia [[104]],
  • Hyperthermia versus oncothermia: Cellular effects in cancer therapy [[105]],
  • Renewing Oncological Hyperthermia-Oncothermia [[106]],
  • The History Of Hyperthermia Rise And Decline [[107]],
  • Oncothermie [[108]],
  • Traditionen und Reformen in der onkologischen Hyperhtermie [[109]],
  • What is against the acceptance of hyperthermia treatment? [[110]],
  • What is against the acceptance of hyperthermia? [[111]],
  • Hyperthermie in der Onkologie: eine aktuell beforschte Behandlungsmethode [[112]],
  • New Results, New Hopes [[113]],
  • Elektromagnetische Hyperthermieverfahren: die kapazitive Kopplung [[114]],
  • Hyperthermia for Oncology: An effective new treatment modality [[115]],
  • Hyperthermie in der Onkologie mit einem historischen Überblick [[116]],
  • Onkotermia fizika a rák ellen [[117]],
  • Electro-hyperthermia: a new paradigm in cancer therapy [[118]],
  • Hipertermia az onkológiában: onkotermia [[119]],
  • Komparative, retrospektive klinische Studie in Bezug auf mit Onkothermie behandelten [[120]],
  • Az ezerarcú víz [[121]],
  • The myriad-minded water [[122]],
  • The cancer revolution [[123]],
  • Burden of oncothermia – Why is it special? [[124]],
  • An allometric approach of tumor angiogenesis [[125]],
  • What is on the horizon for hyperthermic cancer therapy? [[126]],

Personalization

  • Oncothermia as personalized treatment option [[127]],
  • Notes on psychophysics [[128]],
  • Considering skin physiology in capacitive-coupled hyperthermia [[129]],

Book

  • Electromagnetic effects in nanoscale range. Cellular Response to Physical Stress and Therapeutic Applications [[130]],
  • Hyperthermia in oncology [[131]],
  • Heat Therapy in oncology [[132]],
  • Local hyperthermia in Oncology – To Choose or not to Choose? [[133]],
  • Oncothermia – Principles and practices [[134]],
  • Physical background and technical realization of hyperthermia [[135]],
  • Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia [[136]],
  • Heat therapy in oncology, New paradigm in electro-hyperthermia [[137]],
  • Rescuing your own cancer: changing the microenvironment of the tumor to overcome cancer with self-healing [[138]],

Membrane noise

  • Effect of cellular membrane resistivity inhomogeneity on the thermal noise-limit [[139]],
  • Heat penetration into the cell wall [[140]],
  • Response of bio-systems on white noise excitation [[141]],
  • Origin of pink-noise in bio-systems [[142]],

Electric field

  • Role of electrical forces in angiogenesis [[143]],
  • Reorganization of actin filaments and microtubules by outside electric field [[144]],
  • Bioelectromagnetic interactions in agriculture: Controversial positions [[145]],
  • Device and procedure for measuring and examining the signal of systems releasing measurable signal during operation or in response to external excitation [[146]],
  • Industrial device for stimulating seeds [[147]],
  • Is the structure of the water convertible in physical way? [[148]],
  • Üzemi berendezés vetőmagvak stimulációjára [[149]],
  • Electrokinetics of temperature for development and treatment of effusions [[150]],

Nano heating

  • Immune effects by selective heating of membrane rafts of cancer-cells [[151]],
  • Heating of membrane raft of cancer-cells [[152]],
  • Nanoheating without Artificial Nanoparticles [[153]],
  • Electromagnetic effects in nanoscale range. Cellular Response to Physical Stress and Therapeutic Applications [[154]],
  • Heating preciosity - trends in modern oncological hyperthermia [[155]],
  • Energy absorption by the membrane rafts in the modulated electro-hyperthermia (mEHT) [[156]],

Thermodynamics

  • On the Feynman Ratchet and the Brownian motor [[157]],
  • On the extremum properties of thermodynamic steady state in non-linear systems [[158]],

Homeostasis

  • On the Dynamic Equilibrium in Homeostasis [[159]],
  • Study of the oxygen mass transfer in a gas-dispersing apparatus [[160]],
  • On the self-similarity in biologyical processes [[161]],
  • The intrinsic self-time of biosystems [[162]],

Structural considerations

  • On the Aboav-Weaire law [[163]]
  • A short-range electronic instability in high Tc superconductors [[164]],
  • Synergetic model of the formation of non-crystalline structures [[165]],
  • On the topology of 2D polygonal and generalized cell systems [[166]],
  • Electronically Driven Short-Range Lattice Instability: Possible Role in Superconductive Pairing [[167]],
  • Correlation between the structural and electronic stability factors [[168]],
  • Fractal models for the autocatalytic growth of amorphous thin films [[169]],
  • Close-packed Frank-Kasper coordination and high critical temperature superconductivity [[170]],
  • On electronic structure and metastability [[171]],
  • Correlation of metastability, icosahedral symmetry and high-critical-temperature superconductivity [[172]],
  • The exact solution of the real square-lattice-gas system [[173]],
  • On the model calculation of the excitonic-like states and their possible role in autocatalytic processes [[174]],
  • One possible analytical approximation of the critical point of the three-dimensional Ising model [[175]],
  • Coherent potential approximation of the relationship between short-range order and the position of the fermi level on the state density curves [[176]],
  • Intrinsic Noise Monitoring of Complex Systems [[177]],

Thesis

  • Developments into electromagnetic stimulation of neural cells [[178]]
  • Electric field regulation of chondrocyte proliferation, biosynthesis, and cellular signaling [[179]]
  • Studio dei meccanismi fisiopatologici dell’ipertermia oncologica e dell’oncothermia [[180]]
  • Studies on modulated electrohyperthermia induced tumor cell death in a colorectal carcinoma model [[181]]
  • Preclinical investigation on the biological effects of modulated electro-hyperthermia [182]]

 

 

[[1]]      www.oncothermia-journal.com

[[2]]     Chen C-C, Chen C-L, Li J-J, et.al. (2019) The presence of gold nanoparticles in cells associated with the cell-killing effect of modulated electro-hyperthermia, ACS Applied Bio Materials, 1-44, https://doi.org/10.1021/acsabm.9b00453

[[3]]     Cha, J, Jeon T-W, Lee C-G et al. (2015) Electro-hyperthermia inhibits glioma tumorigenicity through the induction of E2F1-mediated apoptosis, Int. Journal Hyperthermia, 31(7):784-792, http://www.ncbi.nlm.nih.gov/pubmed/26367194

[[4]]     Meggyeshazi N, Andocs G, Krenacs T (2013) Programmed cell death induced by modulated electro-hyperthermia. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 187835, http://www.hindawi.com/archive/2013/187835/

[[5]]     Andocs G, Balogh L, Meggyeshazi N, Jakab Cs, Krenacs T, Szasz A (2010) A modulált rádiófrekvenciás (RF) hyperthermia (oncothermia) apoptózis-indukáló hatása immunhiányos egér xenograft tumorokban [The apoptosis-inducing effect of modulated radio-frequency (RF) hyperthermia (oncothermia) on immune deficient mouse xenograft tumors]. Orvostovábbképző Szemle 2010. november különszám pp. 24-25.

[[6]]     Meggyeshazi N, Krenacs T, Szasz A (2010) Klinikai vizsgálatok és evidenciák a modulált vezetéses rádiófrekvenciás hyperthermia (oncothermia) alkalmazásában [Clinical trials and evidences of the application of modulated radio-frequency hyperthermia]. Orvostovábbképző Szemle 2010. november különszám pp. 25-26.

[[7]]     Meggyeshazi N, Andocs G, Spisak S et al. (2013) Modulated electrohyperthermia causes caspase independent programmed cell death in HT29 colon cancer xenografts. Virchows Arch 463(2):329,

[[8]]     Meggyeshazi N, Andocs G, Krenacs T (2012) Modulated electro-hyperthermia induced programmed cell death in HT29 colorectal carcinoma xenograft. Virchows Arch 461 (Suppl 1): S131–S132

[[9]]     Meggyeshazi N, Andocs G, Balogh L, Krenacs T (2011) DNA fragmentation-driven tumor cell degradation induced by modulated electro-hyperthermia. Virchows Arch 459 (Suppl 1): S204-205

[[10]]    Meggyeshazi N, Andocs G, Balogh L et al. (2014) DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia. Strahlenther Onkol 190:815-822, http://www.ncbi.nlm.nih.gov/pubmed/24562547

[[11]]     Andocs G, Meggyeshazi N, Balogh L et al. (2014) Upregulation of heat shock proteins and the promotion of damage-associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia. Cell Stress and Chaperones 20(1):37-46, http://www.ncbi.nlm.nih.gov/pubmed/24973890

[[12]]    Qin W, Akutsu Y, Andocs G et al. (2014) Modulated electro-hyperthermia enhances dendritic cell therapy through an abscopal effect in mice. Oncol Rep 32(6):2373-2379, http://www.ncbi.nlm.nih.gov/pubmed/25242303

[[13]]    Tsang Y-W, Huang C-C, Yang K-L, et al. (2015) Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy, BMC Cancer 15:708, http://www.ncbi.nlm.nih.gov/pubmed/26472466

[[14]]    Vancsik T, Kovago Cs, Kiss E et al. (2018) Modulated electro-hyperthermia induced loco-regional and systemic tumor destruction in colorectal cancer allografts, J Cancer, 9(1): 41-53, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743710/pdf/jcav09p0041.pdf

[[15]]    Andocs G, Renner H, Balogh L, Fonyad L, Jakab C, Szasz A (2009) Strong synergy of heat and modulated electro- magnetic field in tumor cell killing, Study of HT29 xenograft tumors in a nude mice model. Strahlentherapie und Onkologie 185:120–126, http://www.ncbi.nlm.nih.gov/pubmed/19240999

[[16]]    Andocs G, Rehman MU, Zhao Q-L, Tabuchi Y, Kanamori M, Kondo T. (2016) Comparison of biological effects of modulated electro-hyperthermia and conventional heat treatment in human lymphoma U937 cell, Cell Death Discovery (Nature Publishing Group), 2, 16039, http://www.nature.com/articles/cddiscovery201639

[[17]]    Jeon T-W, Yang H, Lee CG, O ST, et.al. (2016) Electro-hyperthermia up-regulates tumour suppressor Septin 4 to induce apoptotic cell death in hepatocellular carcinoma, Int. J. Hyp., 7:1-9, http://dx.doi.org/10.1080/02656736.2016.1186290

[[18]]    Yang K-L, Huang C-C, Chi M-S, Chiang H-C, Wang Y-S, Andocs G, et.al. (2016) In vitro comparison of conventional hyperthermia and modulated electro-hyperthermia, Oncotarget,  oi: 10.18632/oncotarget.11444, http://www.ncbi.nlm.nih.gov/pubmed/27556507

[[19]]   McDonald M, Jackson M, et.al. (2018) First in vitro evidence of modulated electro-hyperthermia treatment performance in combination with megavoltage radiation by clonogenic assay, Sci Rep. 8(1):16608. doi: 10.1038/s41598-018-34712-0, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226525/

[[20]]   Chung H-J, Kim H-J, Hong S-T. (2019) Iron-dextran as a thermosensitizer in radiofrequency hyperthermia for cancer treatment, Appl Biol Chem, 62:24, 1-9,

[[21]]    Vancsik T, Forika G, Balogh A, et.al. (2019) Modulated electro-hyperthermia induced p53 driven apoptosis and cell cycle arrest additively support doxorubicin chemotherapy of colorectal cancer in vitro, Cancer Medicine, doi: 10.1002/cam4.2330,

https://www.ncbi.nlm.nih.gov/pubmed/31183995 

[[22]]  Prasad B, Kim S, Cho W, et.al. (2019) Quantitative estimation of the equivalent radiation dose escalation using radiofrequency hyperthermia in mouse xenograft models of human lung cancer, Scientific Reports, Nature, 9: 3942, https://www.nature.com/articles/s41598-019-40595-6

[[23]]   Tsang Y-W, Chi K-H, Huang C-C, et.al. (2019) Modulated electro-hyperthermia-enhanced liposomal drug uptake by cancer cells, International Journal of Nanomedicine, 14:1269-1579, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743710/pdf/jcav09p0041.pdf

[[24]]  Balogh L, Polyak A, Postenyi Z et al. (2016) Temperature increase induced by modulated electrohyperthermia (oncothermia®) in the anesthetized pig liver, Journal of Cancer Research and Therapeutics, 12(3):1153-1159, http://www.cancerjournal.net/article.asp?issn=0973-1482;year=2016;volume=12;issue=3;spage=1153;epage=1159;aulast=Balogh

[[25]]   Andocs G, Osaki T, Tsuka T, Imagawa T et al. (2013) Oncothermia research at preclinical level. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 272467, http://www.hindawi.com/archive/2013/272467/

[[26]]   Kovago Cs, Meggyeshazi N, Andocs G, Szasz A (2013) Report of the pilot-study done for the proposed investigation on the possible synergic effect between high dose ascorbic acid application and oncothermia treatment. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 386913, http://www.hindawi.com/archive/2013/386913/

[[27]]   Andocs G, Okamoto Y, Kawamoto K et al. (2013) Oncothermia basic research at in vivo level. The first results in Japan. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 197328, http://www.hindawi.com/archive/2013/197328/

[[28]]    Balint K, Balogh L, Postenyi Z, Andocs G, Szasz A, et.al. (2011) Diagnostic and therapeutic aspects of canine malignant melanoma. Part 2. Own experiences, Magyar Állatorvosok Lapja, 2011 július:424-431

[[29]]     Chung H-J, Lee H-K, et.al. (2018) Transferrin as a thermosensitizer in radiofrequency hyperthermia for cancer treatment, Scientific Reports, published online: 10 September, 2018, 8:13505, https://www.nature.com/articles/s41598-018-31232-9.pdf  

[[30]]   Kim J-K, Prasad B, Kim S. (2017) Temperature mapping and thermal dose calculation in combined radiation therapy and 13.56 MHz radiofrequency hyperthermia for tumor treatment. Proc. SPIE 10047, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVI, 1004718; http://spie.org/Publications/Proceedings/Paper/10.1117/12.2253163?origin_id=x4318 

[[31]]    Herzog A (2008) Messung der Temperaturverteilung am Modell der nicht perfundierten Schweineleber bei lokaler Hyperthermie mit Kurzwellen mit 13,56 MHz, Forum Hyperthermie, 1/10, 30-34, www.forum-medizin.de/download/977/

[[32]]   Nagy G, Meggyeshazi N, Szasz O (2013) Deep temperature measurements in oncothermia processes. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 685264, http://www.hindawi.com/archive/2013/685264/

[[33]]   Fanning PJ, Emkey G, Smith RJ et al. (2003) Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage The Journal of Biological Schemistry, 278(51):50940-50948, http://www.jbc.org/content/278/51/50940.full

[[34]]   Meggyeshazi N, Andocs G, Spisak S et al. (2013) Early changes in mRNA and protein expression related to cancer treatment by modulated electro-hyperthermia. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 249563, http://www.hindawi.com/archive/2013/249563/

[[35]]   Szasz O, Andocs G, Meggyeshazi N (2013) Modulation effect in oncothermia. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 395678, http://www.hindawi.com/archive/2013/398678/

[[36]]   Vincze Gy, Szasz A. (2018) Similarities of modulation by temperature and by electric field, OJBIPHY, 8, 95-103,  https://www.scirp.org/journal/PaperInformation.aspx?PaperID=84883

[[37]]   Andocs G, Rehman MU, Zhao QL, Papp E, Kondo T, Szasz A. (2015) Nanoheating without Artificial Nanoparticles Part II. Experimental support of the nanoheating concept of the modulated electro-hyperthermia method, using U937 cell suspension model, Biology and Medicine 7(4):1-9,

https://www.omicsonline.org/open-access/nanoheating-without-artificial-nanoparticles-part-ii-experimental-support-of-the-nanoheating-concept-of-the-modulated-electrohyperthermiamethod-0974-8369-1000247.php?aid=60362

[[38]]  Jeung TS, Ma SY, Yu J et al. (2013) Cases that respond to oncothermia monotherapy, Conf. Papers in Medicine, Vol. 2013, Article ID 392480, Hindawi, https://www.hindawi.com/journals/cpis/2013/392480/

[[39]] Szasz N, Hung H, Sen S et al. (2003) Electric field regulation of chondrocyte biosynthesis in agarose gel constructs, 49th Annual Meeting of the Orthopaedi Research Society, Poster Nr. 0672, https://www.ors.org/Transactions/49/0672.pdf

[[40]]   Zaffaroni N, Fiorentini G, De Giorgi U, (2001) Hyperthermia and hypoxia: new developments in anticancer chemotherapy; Eur J Surg Oncol 27:340-342, http://www.ncbi.nlm.nih.gov/pubmed/11417976

[[41]]   Szasz O. (2019) Bioelectromagnetic paradigm of cancer treatment – Modulated electro-hyperthermia (mEHT), OJBIPHY,  9, 98-109, https://file.scirp.org/pdf/OJBIPHY_2019022616103729.pdf

[[42]]   Szasz A, Vincze Gy, Andocs G, Szasz O (2009) Do Field-Free Electromagnetic Potentials Play a Role in Biology?. Electromagn Biol Med 28(2):135–147, http://www.ncbi.nlm.nih.gov/pubmed/19811396

[[43]]   Szasz A, Vincze Gy, Andocs G, Szasz O (2009) Effect of Curl-Free Potentials on Water. I Electromagn Biol Med 28(2):166–181, http://www.ncbi.nlm.nih.gov/pubmed/19811398

[[44]]   Hegyi G, Vincze Gy, Szasz A (2007) Axial vector interaction with bio-systems. Electr Biol Med 26(2):107–118, http://www.ncbi.nlm.nih.gov/pubmed/17613038

[[45]]  Szasz A. (2014) Oncothermia: Complex therapy by EM and fractal physiology, XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), IEEE Xplore 20 October 2014, DOI: 10.1109/URSIGASS.2014.6930100, https://ieeexplore.ieee.org/document/6930100

[[46]]   Andocs G, Szasz O, Szasz A (2009) Oncothermia treatment of cancer: from the laboratory to clinic. Electromagn Biol Med 28(2):148–165, http://www.ncbi.nlm.nih.gov/pubmed/19811397

[[47]]   Hegyi G, Szigeti GP, Szasz A (2013) Hyperthermia versus oncothermia: Cellular effects in complementary cancer therapy. Evid Based Complement Alternat Med 2013:672873, http://www.hindawi.com/journals/ecam/2013/672873/

[[48]]   Hegyi G, Szasz O, Szasz A (2013) Oncothermia: A new paradigm and promising method in cancer therapies. Acupuncture and Electro-Therapeutics Res. Int. J. 38:161-197, http://www.ncbi.nlm.nih.gov/pubmed/24494322

[[49]]   Baronzio G, Parmar G, Ballerini M, Szasz A et al. (2014) A brief overview of hyperthermia in cancer treatment. Journal of Integrative Oncology, 3:1

[[50]]   Szasz O, Szasz A (2014) Oncothermia - Nano-heating paradigm. J Cancer Sci Ther 6:4, http://www.omicsonline.org/open-access/oncothermia-nanoheating-paradigm-1948-5956.1000259.pdf

[[51]]    Vincze Gy, Szasz A, Szasz N (2005) On the thermal noise limit of cellular membranes. Bioelectromagnetics 26(1):28–35, http://www.ncbi.nlm.nih.gov/pubmed/15605404

[[52]]   Szendro P, Vincze G, Szasz A (2001) Pink noise behaviour of the bio-systems. Eur Biophys J 30(3):227–231, http://www.ncbi.nlm.nih.gov/pubmed/11508842

[[53]]   Szendro P, Vincze G, Szasz A (2001) Bio-response to White Noise Excitation. Electro- and Magnetobiology 20(2):215-229, http://www.tandfonline.com/doi/abs/10.1081/JBC-100104145?journalCode=iebm19

[[54]]  Szasz A, Vincze Gy, Szigeti Gy, Szasz O. (2017) Internal charge redistribution and currents in cancerous lesions, J Adv in Biology, 10(2):2061-2079, http://cirworld.com/index.php/jab/article/view/6328/6283

[[55]]   Szasz A (1991) An electrically driven instability: the living-state (Does the room temperature superconductivity exist?). Physiol Chem Phys Med NMR 23:43–50, http://real.mtak.hu/6379/1/1184363.pdf

[[56]]   Vincze Gy, Szasz A, Liboff AR (2008) New Theoretical Treatment of Ion Resonance Biological Phenomena. Bioelectromagnetics 29(5):380-386, http://www.ncbi.nlm.nih.gov/pubmed/18288680

[[57]]   Szasz A, Vincze Gy, Szasz O, Szasz N (2003) An energy analysis of extracellular hyperthermia. Magneto- and electro-biology 22(2):103–115, http://www.tandfonline.com/doi/abs/10.1081/JBC-120024620

[[58]]   Szasz A, D van Noort, Scheller A et al. (1994) Water states in living systems. I. Structural aspects, Physiol. Chem. Phys. 26(4), 299–322, http://www.ncbi.nlm.nih.gov/pubmed/7700980

[[59]]   Szasz A, Vincze Gy (2006) Dose concept of oncological hyperthermia: Heat-equation considering the cell destruction. J Cancer Res Ther 2(4):171–181, http://www.ncbi.nlm.nih.gov/pubmed/17998700

[[60]]   Szasz A (2007) Hyperthermia, a Modality in the Wings. J Cancer Res Ther 3(1):56–66, http://www.ncbi.nlm.nih.gov/pubmed/17998724

[[61]]    Szasz O, Szasz A (2016) Heating, efficacy and dose of local hyperthermia. Open Journal of Biophysics, 6:10-18, http://www.scirp.org/journal/PaperInformation.aspx?paperID=62874

[[62]]   Vincze Gy, Szasz O, Szasz A. (2015) Generalization of the thermal dose of hyperthermia in oncology, Open Journal of Biophysics 5(4):97-114, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=60654

[[63]]   Vincze Gy, Szasz A (2015) Critical analysis of the thermodynamics of reaction kinetics. Journal of Advances in Physics 10(1):2538-2559, https://cirworld.com/index.php/jap/article/view/1340

[[64]]   Szasz O, Szigeti GyP, Szasz A (2016) Connections between the specific absorption rate and the local temperature. Open Journal of Biophysics 6:53-74; http://file.scirp.org/pdf/OJBIPHY_2016063014260548.pdf   

[[65]]  Szasz O, Szigeti GyP, Vancsik T, Szasz A. (2018) Hyperthermia dosing and depth of effect, Open Journal of Biophysics, 2018, 8, 31-48, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=81896

[[66]]   Lee S-Y, Szigeti GP, Szasz AM (2018) Oncological hyperthermia: The correct dosing in clinical applications, Int. J. Oncology, published online on 23 November 2018, https://doi.org/10.3892/ijo.2018.4645   

[[67]]   Marjan M, Kikineshi A, Szendro P, Szasz A (2001) Modelling of the dissipative structure of water. Acta Technologica Agriculturae 4:(3)77-80

[[68]]   Maryan M, Kurik M, Kikineshy A, Watson LM, Szasz A (1999) A synergetic representation for the double-structure model of liquid water. Ukrainskii Fizicheskii Zhurnal 44:1227-1232, http://real.mtak.hu/6591/

[[69]]   Maryan M, Kurik M, Kikineshy A, Watson LM, Szasz A (1999) Two-structure model of liquid water. Modelling and Simulation in Materials Science and Engineering 7:321-331, http://real.mtak.hu/6575/

[[70]]   Maryan MI, Kikineshi AA, Szasz A (2001) Self-organizing processes and dissipative structure formation in the non-crystalline materials. Phys Chem Stat Sol 2(4):585–593,

[[71]]    Zsoldos I, Szendro P, Watson L, Szasz A (2001) Topological Correlation in amorphous structures. Comp Mater Sci 20(1):28–36, http://www.sciencedirect.com/science/article/pii/S0927025600001208

[[72]]   Zsoldos I, Szasz A (1999) Appearance of collectivity in two-dimensional cellular structures. Comp Material Science 15(4):441–448, http://www.sciencedirect.com/science/article/pii/S0927025699000312

[[73]]   Zsoldos I, Szasz A (1999) From Random Cellular Structure to the Honeycomb Pattern. J Hungarian Agricultural Research 3:9-11

[[74]]   Zsoldos I, Szasz A (1999) From two dimensional cellular structures to the honeycomb pattern. Hungarian Agricultural Research 3:9-14

[[75]]   Zsoldos I, Szasz A (1999) Háromdimenziós sejtrendszerek topológiai összefüggései. Gépgyártástechnológia 1:27-35, http://real.mtak.hu/6576/

[[76]]   Zsoldos I, Janik J, Szasz A (1999) Topological aspects of ordering: Proceeding of the 7th Seminar of IFHT Heat Treatment Surface Engineering of Light Alloys. Engineering of Light Alloys pp. 343-343.

[[77]]    Szigeti GP, Szasz O, Hegyi G (2017) Connections between Warburg’s and Szentgyorgyi’s Approach about the Causes of Cancer. Journal of Neoplasm 1(2:8):1-13; http://neoplasm.imedpub.com/connections-between-warburgs-and-szentgyorgyis-approach-about-thecauses-of-cancer.pdf

[[78]]   Vincze Gy, Sziget GyP, Szasz A (2016) Reorganization of the cytoskeleton. Journal of Advances in Biology 9(2):1872-1882; https://cirworld.com/index.php/jab/article/view/4059

[[79]]   Saupe H, Szigeti GyP, Andocs G (2016) Why modulated electrohyperthermia (mEHT) destroys the rouleaux formation of erythrocytes? Journal of Advances in Biology 9(3):1945-1955; http://paper.researchbib.com/view/paper/111077    

[[80]]   Andocs G, Meggyeshazi N, Okamoto Y, Balogh L, Szasz O (2013) Bystander Effect of Oncothermia. Hindawi Publishing Corporation Conference Papers in medicine, Volume 2013, Article ID 953482; http://www.hindawi.com/archive/2013/953482/ 

[[81]]    Joo E, Szasz A, Szendro P (2005) A mobiltelefonokból származó elektromágneses expozíció alakulása 900/1800/2100 MHz frekvencián. Munkavédelem és Biztonságtechnika 17:(1)44-50

[[82]]   Joo E, Szendro P, Vincze Gy, Szasz A (2004) Assessment of electromagnetically treated wheat kernel at 120Hz using the FDTD method. Acta Technologica Agriculturae 7:101-105

[[83]]   Joo E, Szasz A, Szendro P (2006) Metal-framed spectacles and implants and specific absorption rate among adults and children using mobile phones at 900/1800/2100 MHz. Electromagn Biol Med 25(2):103–112, http://www.ncbi.nlm.nih.gov/pubmed/16771299

[[84]]   Vincze Gy, Szigeti GyP, Szasz O (2016) Negative impedance interval of blood flow in capillary bed. Journal of Advances in Physics, 11(6):3482-3487, https://cirworld.com/index.php/jap/article/view/365

[[85]]   Vincze Gy, Szigeti GyP, Szasz O (2016) Non-Newtonian analysis of blood-flow. Journal of Advances in Physics, 11(6):3470-3481, https://cirworld.com/index.php/jap/article/view/6834

[[86]]   Szasz A, Szasz O, Szasz N (2001) Hyperthermic radiology. Why to combine? Strahlentherapie und Onkologie 177:110-110, http://real.mtak.hu/6605/

[[87]]   Szasz A, Szasz O, Vincze Gy et al. (2009) Non-Mechanical Energy Transfer of Electrically Neutral Electrolytes. Mechanical Enginnering Letters 3:180-187

[[88]]   Andocs G (2008) Front page illustration of Forum Medizine. Forum Hyperthermia, 1/10, Forum Medizin

[[89]]   Vincze Gy, Szasz A (2016) Onsagerian quantum mechanics. Journal of Advances in Physics, 11(6):3353-3373, https://cirworld.com/index.php/jap/article/view/349

[[90]]   Vincze Gy, Szasz A. (2015) Nonequilibrium thermodynamic and quantum model of a damped oscillator. In: Mofid Gorji-Bandpy (ed) Recent advances in thermo and fluid dynamics. Chapter 3, In Tech, http://www.intechopen.com/books/recent-advances-in-thermo-and-fluid-dynamics/nonequilibrium-thermodynamic-and-quantum-model-of-a-damped-oscillator

[[91]]    Vincze Gy, Szasz A (2014) Rosen-Chambers variation theory of linearly-damped classic and quantum oscillator. Journal of Advances in Physics 4(1):405-426, http://cirworld.com/index.php/jap/article/view/1200/pdf_34

[[92]]  Szasz A. (2019)  Thermal and nonthermal effects of radiofrequency on living state and applications as an adjuvant with radiation therapy, Journal of Radiation and Cancer Research, 10:1-17, http://www.journalrcr.org/article.asp?issn=2588-9273;year=2019;volume=10;issue=1;spage=1;epage=17;aulast=Szasz

[[93]]   Szasz A (2013) Challenges and Solutions in Oncological Hyperthermia. Thermal Med 29(1):1-23, https://www.jstage.jst.go.jp/article/thermalmed/29/1/29_1/_article

[[94]]   Szigeti GyP, Szasz O, Hegyi G. (2016) Personalised dosing of hyperthermia, Journal of Cancer Diagnosis, 2016, 1:107, https://www.omicsonline.org/open-access/personalised-dosing-of-hyperthermia-.pdf

[[95]]   Douwes FR (2006) Hyperthermie in der Tumortherapie. Natum, Mitteilungen 6, 2006

[[96]]   Douwes FR (2000) Too hot for cancer. Alternative Medicine 37:1-2

[[97]]   Hager ED, Birkenmeier J, Popa C. (2006) Hyperthermia in oncology: A promising new method?, Translation of publication of Deutsche Zeitschrift für Onkologie, 38:100-107, http://biomedhospital.de/sites/default/files/artikel-eng-hyperthermie.pdf

[[98]]   Fiorentini G, Szasz A (2006) Hyperthermia today: electric energy, a new opportunity in cancer treatment. J Cancer Res Ther 2(2):41–46, http://www.ncbi.nlm.nih.gov/pubmed/17998673

[[99]]   Douwes FR (2006) Hyperthermie in der Tumortherapie. Natum, Mitteilungen 6, 2006

[[100]] Hager ED (1998) Stellenwert der Hyperthermie in der Onkotherapie. Forschung und Praxis, Gesundes Leben 1/98,

[[101]]  Hager ED (1997) Formen der Hyperthermie und klinische Ergebnisse. Z. Onkol. / J. of Oncol. 29(3):78-83

[[102]]  Szasz A (2013) "Quo vadis" oncologic hyperthermia? Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 201671, http://www.hindawi.com/archive/2013/201671/

[[103]]  Roussakow S (2013) Critical Analysis Of Electromagnetic Hyperthermia Randomized Trials: Dubious Effect And Multiple Biases. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 412186, http://www.hindawi.com/archive/2013/412186/

[[104]]  Szasz O (2013) Essentials of oncothermia. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 159570, http://www.hindawi.com/archive/2013/159570/

[[105]] Szigeti GyP, Hegyi G, Szasz O (2013) Hyperthermia versus oncothermia: Cellular effects in cancer therapy. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 274687, http://www.hindawi.com/journals/ecam/2013/672873/

[[106]] Szasz O (2013) Renewing Oncological Hyperthermia-Oncothermia. Open Journal of Biophysics, 3:245-252, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=38154

[[107]]  Roussakow S (2013) The History Of Hyperthermia Rise And Decline. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 428027, http://www.hindawi.com/archive/2013/428027/

[[108]] Szasz A (2008) Oncothermie. OM & Ernährung Fachinformation, Nr.123, F22-F23

[[109]] Szasz A (2008) Traditionen und Reformen in der onkologischen Hyperthermie. Forum Hyperthermie 3:20-21, https://www.researchgate.net/publication/275828111_Traditionen_und_Reformen_in_der_onkologischen_Hyperhtermie

[[110]]  Szasz A (2007) What is against the acceptance of hyperthermia treatment? Forum Hyperthermie 144:3-7

[[111]]   Szasz A (2006) What is against the acceptance of hyperthermia? Die Naturheilkunde Forum-Medizine 83:3–7

[[112]]   Szasz A, Szasz N, Szasz O (2004) Hyperthermie in der Onkologie: eine aktuell beforschte Behandlungsmethode. Integrative onkologie 1: 19-27

[[113]]   Szasz A, Szasz O, Szasz N (2004) New Results, New Hopes. Indian Association for Hyperthermic Oncology and Medicine 2. pp. 1-5.

[[114]]   Szasz A (2003) Elektromagnetische Hyperthermieverfahren: die kapazitive Kopplung. Forum Komplementare Onkologie Hyperthermie, 4:III–IX, http://studylibde.com/doc/3026289/elektromagnetische-hyperthermieverfahren--die-kapazitive-...

[[115]]  Szasz A, Szasz N, Szasz O (2003) Hyperthermia for Oncology: An effective new treatment modality. Integrative onkologie 1: 1-13

[[116]]  Szasz A, Szasz N, Szasz O (2003) Hyperthermie in der Onkologie mit einem historischen Überblick. Deutche zeitschrift für onkologie 35: 140-154, https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2003-43178

[[117]]   Szasz A, Szasz O, Szasz N (2002) Onkotermia fizika a rák ellen. Fizikai szemle 52(2):45-52

[[118]]  Szasz A, Szasz O, Szasz N (2001) Electro-hyperthermia: a new paradigm in cancer therapy. Deutsche Zeitschrift fur Onkologie 33:91–99, http://real.mtak.hu/6593/

[[119]]   Szasz A, Szasz O, Szasz N (2001) Hipertermia az onkológiában: onkotermia. Medius Anonymus 11(9):32-33, http://real.mtak.hu/6594/

[[120]] Szasz A (1999) Komparative, retrospektive klinische Studie in Bezug auf mit Onkothermie behandelten. Bauchspeicheldrüsenkrebs. pp. 1-7

[[121]]   Szendro P, Szasz A, Szoke Sz (1998) Az ezerarcú víz. Öntözés Gazdálkodás 36:3-10

[[122]]  Szendro P, Szasz A, Szoke Sz (1998) The myriad-minded water. Hungarian Agricultural Engineering 11:17-20

[[123]] Salvin S (2016) The cancer revolution, Win-win Health Intelligence Limited, http://thecancerrevolution.co.uk/wp-content/uploads/2016/03/Prof-Slavin-CTCI-Appendix-1.pdf

[[124]] Szasz O (2013) Burden of oncothermia – Why is it special? Hindawi Publishing Corporation Conference Papers in medicine, Volume 2013, Article ID 938689; http://www.hindawi.com/archive/2013/938689/

[[125]]   Szasz O, Vincze G, Szigeti GP, Benyo Z, Szasz A. (2018) An allometric approach of tumor-angiogenesis, Medical Hypothesis, 116:74-78, https://www.sciencedirect.com/science/article/pii/S030698771830015X  

[[126]]  Szigeti GP, Lee DY, Hegyi G. (2017) What is on the horizon for hyperthermic cancer therapy? J Traditional Medicine and Clinical Naturopathy, 6:2, 1000217, https://www.omicsonline.org/open-access/what-is-on-the-horizon-for-hyperthermic-cancer-therapy.php?aid=88372

[[127]]  Szasz O, Andocs G, Meggyeshazi N (2013) Oncothermia as personalized treatment option. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 2941364, http://www.hindawi.com/archive/2013/941364/

[[128]] Vincze Gy, Szasz A (2016) Notes on psychophysics. Journal of Advances in Biology 9(1):1756-1760;

[[129]] Szasz O, Szasz A (2016) Considering skin physiology in capacitive-coupled hyperthermia. Journal of Advances in Physics 11(9):3966-3972; https://cirworld.com/index.php/jap/article/view/206

[[130]]  Szasz A (2013) Electromagnetic effects in nanoscale range. Cellular Response to Physical Stress and Therapeutic Applications (eds. Tadamichi Shimizu, Takashi Kondo), chapter 4. Nova Science Publishers, Inc

[[131]]   Pang CLK (2015) Hyperthermia in oncology, CRC Press, https://www.crcpress.com/Hyperthermia-in-Oncology/Pang/p/book/9781498714464

[[132]]  Szasz A, Morita T (2012) Heat Therapy in oncology, New paradigm in Hyperthermia. Nippon Hvoronsha, Tokyo, Japan

[[133]]  Szasz A, Iluri N, Szasz O (2013) Local hyperthermia in Oncology – To Choose or not to Choose? A chapter in book: Hyperthermia, Ed: Huilgol N, ISBN 980-953-307-019-8, InTech, Ch.1. pp.1-82; http://www.intechopen.com/books/hyperthermia/local-hyperthermia-in-oncology-to-choose-or-not-to-choose-

[[134]]  Szasz A, Szasz N, Szasz O (2010) Oncothermia – Principles and practices. Springer Science, Heidelberg, http://www.springer.com/gp/book/9789048194971

[[136]]  Szasz A (2015) Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia. In: Paul J. Rosch (ed) Bioelectromagnetic and subtle energy medicine, pp. 323-336, CRC Press, Taylor & Francis Group

[[137]]  Lee D, Szasz A(2016) Heat therapy in oncology, New paradigm in electro-hyperthermia, Kim Jei Min Publishing, ISBN: 979-11-958291-0-1 13510

[[138]]  Chi K-H. (2019) Rescuing your own cancer: changing the microenvironment of the tumor to overcome cancer with self-healing, Times Publishing

[[139]]  Vincze Gy, Szasz A (2015) Effect of cellular membrane resistivity inhomogeneity on the thermal noise-limit, Journal of Advances in Physics, Vol. 11, No. 4, 3170-3183, http://paper.researchbib.com/view/paper/76617

[[140]]  Vincze Gy, Szendro P, Szasz A et al. (2003) Heat penetration into the cell wall. Acta Technologica Agriculturae 6:(3)68-72

[[141]]   Szendro P, Vincze Gy, Szasz A (1999) Response of bio-systems on white noise excitation. Hungarian Agricultural Engineering 12:31-32

[[142]]  Szendro P, Vincze Gy, Szasz A (1998) Origin of pink-noise in bio-systems. Hungarian Agricultural Engineering 11: 42-43

[[143]] Szasz O, Szigeti GyP, Szasz A, Benyo Z. (2018) Role of electrical forces in angiogenesis, OJBIPHY, 8, 49-67

[[144]] Vincze Gy, Szasz A. (2015) Reorganization of actin filaments and microtubules by outside electric field, Journal of Advances in Biology 8(1):1514-1518

[[145]]  Szendro P, Szasz A (2005) Bioelectromagnetic interactions in agriculture: Controversial positions. Bulletin of the Szent István University - Gödöllő 2:173-206

[[146]]  Szasz N, Szasz O (2005) Device and procedure for measuring and examining the signal of systems releasing measurable signal during operation or in response to external excitation. Forum Komplementaire Onkologie 4:3-9

[[147]]  Szendro P, Koltay J, Vincze Gy, Szasz A et al. (1999) Industrial device for stimulating seeds. Hungarian Agricultural Engineering 12:51-52

[[148]]  Szendro P, Koltay J, Szasz A et al. (1999) Is the structure of the water convertible in physical way? Hungarian Agricultural Engineering 12:43-45

[[149]]  Szendro P, Koltay J, Vincze Gy, Szasz A et al. (1999) Üzemi berendezés vetőmagvak stimulációjára. Mezőgazdasági Technika 40:(9)10-12

[[151]] Dank M, Meggyeshazi N, Szigeti Gy, Andocs G. (2016) Immune effects by selective heating of membrane rafts of cancer-cells, ASCO Annual Meeting, abstr: e14571, https://meetinglibrary.asco.org/record/124231/abstract

[[152]]  Szasz O, Andocs G, Kondo T, et.al. (2015) Heating of membrane raft of cancer-cells, ASCO Annual Meeting, J Clin Oncol 33, (suppl, abstr e22176), http://meetinglibrary.asco.org/content/151213-156

[[153]]  Vincze Gy, Szigeti Gy, Andocs G, Szasz A. (2015) Nanoheating without Artificial Nanoparticles, Biology and Medicine 7(4):249, http://www.omicsonline.com/open-access/nanoheating-without-artificial-nanoparticles-0974-8369-1000249.php?aid=61783

[[154]]  Szasz A (2013) Electromagnetic effects in nanoscale range. Cellular Response to Physical Stress and Therapeutic Applications (eds. Tadamichi Shimizu, Takashi Kondo), chapter 4. Nova Science Publishers, Inc

[[155]] Szasz O, Szasz A.M. Minnaar C, Szasz A (2017) Heating preciosity - trends in modern oncological hyperthermia. Open Journal of Biophysics 7:116-144, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=77458  

[[156]] Papp E, Vancsik T, Kiss E, Szasz O. (2017) Energy absorption by the membrane rafts in the modulated electro-hyperthermia (mEHT), Open Journal of Biophysics, 7, 216-229, https://file.scirp.org/pdf/OJBIPHY_2017102715065328.pdf

[[157]]  Vincze Gy, Szigeti GyP, Szasz A. (2018) On the Feynman ratchet and the Brownian motor, Open Journal of Biophysics, 2018, 2, 22-30, https://file.scirp.org/pdf/OJBIPHY_2018010914452588.pdf 

[[158]] Vincze Gy, Szasz A (2011) On the extremum properties of thermodynamic steady state in non-linear systems. In Book: Thermodynamics - Interaction Studies - Solids, Liquids and Gases, InTech, Vienna, Austria, http://www.intechopen.com/books/thermodynamics-physical-chemistry-of-aqueous-systems/on-the-extremum-properties-of-thermodynamic-steady-state-in-non-linear-systems

[[159]] Hegyi G, Vincze Gy, Szasz A (2012) On the Dynamic Equilibrium in Homeostasis. Open Journal of Biophysics 2:64-71, http://file.scirp.org/pdf/OJBIPHY20120300001_81525786.pdf

[[160]] Szasz A, Szendro P, Vincze Gy et al. (2007) Study of the oxygen mass transfer in a gas-dispersing apparatus. Hungarian Agricultural Engineering &: 23-25

[[161]] Szasz O, Szigeti GyP, Szasz A. (2017) On the self-similarity in biologyical processes, OJBIPHY, 7(4):183-196, http://file.scirp.org/pdf/OJBIPHY_2017090715550515.pdf

[[162]] Szasz O, Szigeti GP, Szasz A. (2019) The intrinsic self-time of biosystems, OJBIPHY, 9, 131-145, https://file.scirp.org/pdf/OJBIPHY_2019040815291683.pdf

[[163]] Vincze Gy, Zsoldos I, Szasz A (2004) On the Aboav-Weaire law. J Geomet Phys 51(1):1–12, http://www.sciencedirect.com/science/article/pii/S0393044003001335

[[164]] Szasz A (1990) A short-range electronic instability in high Tc superconductors. In: Zipper E, Manka R, Maska M (eds) Strongly Correlated Electron systems & High-Tc superconductivity, World Scientific, Singapore, pp. 168-245, http://real.mtak.hu/6365/

[[165]] Maryan M, Szasz A, Szendro P et al. (2005) Synergetic model of the formation of non-crystalline structures. Journal of Non-Crystalline Solids 351(2):189–193; http://www.sciencedirect.com/science/article/pii/S002230930400897X

[[166]] Zsoldos I, Reti T, Szasz A (2004) On the topology of 2D polygonal and generalized cell systems. Computational Materials Science 29:119-130; http://www.sciencedirect.com/science/article/pii/S0927025603001800

[[167]] Szasz A (1991) Electronically Driven Short-Range Lattice Instability: Possible Role in Superconductive Pairing. Journal of Superconductivity 4(1):3-15; http://www.springerlink.com/content/p6508m156t561405/ 

[[168]] Szasz A, Kertesz L, Aysawy MA et al. (1991) Correlation between the structural and electronic stability factors. Journal of Non-Crystalline Solids 130:211-216; http://www.sciencedirect.com/science/article/pii/002230939190457H 

[[169]] Pan X, Szasz A, Fabian DJ (1989) Fractal models for the autocatalytic growth of amorphous thin films. Journal of Applied Physics 66:146-151; http://aip.scitation.org/doi/abs/10.1063/1.343894

[[170]] Szasz A, Fabian DJ, Janosi IM (1989) Close-packed Frank-Kasper coordination and high critical temperature superconductivity. Periodica Polytechnica-Chemical Engineering 34(1-3):163-171; http://www.pp.bme.hu/ch/article/viewFile/2720/1825 

[[171]]   Szasz A, Fabian DJ (1988) On electronic structure and metastability. Solid State Communications 65(10):1085-1088; http://real.mtak.hu/6320/  

[[172]] Szasz A, Fabian DJ (1988) Correlation of metastability, icosahedral symmetry and high-critical-temperature superconductivity. Physica C - Superconductivity and Its Applications 153-155:1205-1206; http://www.sciencedirect.com/science/article/pii/0921453488902432 

[[173]] Szasz A (1987) The exact solution of the real square-lattice-gas system. Physica Status Solidi 140:415-420; http://real.mtak.hu/6317/1/1183025.pdf

[[174]] Demidenko VS, Szasz A, Aysawi MA (1987) On the model calculation of the excitonic-like states and their possible role in autocatalytic processes. Physica Status Solidi 140:121-126; http://onlinelibrary.wiley.com/doi/10.1002/pssb.2221400112/abstract 

[[175]] Szasz A (1985) One possible analytical approximation of the critical point of the three-dimensional ising model. Physica Status Solidi 130(2):K97-K100; http://onlinelibrary.wiley.com/doi/10.1002/pssb.2221300250/abstract

[[176]] Batirev IG, Katsnelson AA, Kertesz L, Szasz A (1980) Coherent potential approximation of the relationship between short-range order and the position of the fermi level on the state density curves. Physica Status Solidi 100:479-485; http://onlinelibrary.wiley.com/doi/10.1002/pssb.2221000212/abstract   

[[177]]  Szasz O, Vincze Gy, Szigeti GyP, Szasz A (2017) Intrinsic Noise Monitoring of Complex Systems, OJBIPHY, 7, 197-215, http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=79028

[[178]] Lim EJ (2016) Developments into electromagnetic stimulation of neural cells, The University of Sydney, thesis

[[179]] Szasz N (2003) Electric field regulation of chondrocyte proliferation, biosynthesis, and cellular signaling, Massachusetts Institute of Technology, thesis

[[180]] Fioravanti M (2013-14) Studio dei meccanismi fisiopatologici dell’ipertermia oncologica e dell’oncothermia, Alma Mater Studiorum-Universita’ Di Bologna, thesis, https://amslaurea.unibo.it/7878/

[[181]]   Meggyeshazi N (2015) Studies on modulated electrohyperthermia induced tumor cell death in a colorectal carcinoma model, Pathological Sciences Doctoral School, Semmelweis University, thesis, http://repo.lib.semmelweis.hu/handle/123456789/3956

[182] Andocs G (2015) Preclinical investigation on the biological effects of modulated electro-hyperthermia, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, thesis