Are we able igniting natural processes to kill cancer cells?

Dr. Nora Szasz1, Dr. Gabor Andocs1, Dr. Oliver Szasz2, Dr. Lajos Balogh3, Dr. Linda Muller1, Dr. Nora Meggyeszaz1, Prof. Dr. Andras Szasz1

(1) Department of Pharmacology and Toxicology, Faculty of Veterinary Sciences, St. Istvan University, Budapest, Hungary.
(2) National Research Institute for Radiobiology and Radioprotection, Budapest, Hungary.
(3) 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
(4) Department of Clinic of Reproduction, Faculty of Veterinary Sciences, St. Istvan University, Budapest, Hungary.

Objective

Long lasting natural events in eliminating the tumor are being studied. In rats, the idea of a permanent damage of the tumor area by high frequency temperature rise in the tumor area is not new. The objective is to achieve a therapeutic benefit by using a non-invasive method. The objective of the study is to investigate whether the method is able to destroy the tumor area by using a non-invasive method. The results show that the method is able to destroy the tumor area by using a non-invasive method.

Method

The polarization potentials are effectively increased in terms of the degree of polarization of the electric field. The degree of polarization is measured in the targeted volume of the tumor. This allows the identification of the electric field, which can be used to trigger the apoptosis process.

Results

Experiments show a definite time delay of tumor destruction. The effect of ONC is not only a single shot effect, but also has a cumulative effect. However, the time delay shows a gradual improvement of the cell growth. This is not immediately evident as the cell growth is not affected by the ONC treatment. However, after a gradual time delay, the ONC treatment shows an increase in the number of surviving cells.

Conclusion

Oncothermia probably ignites natural apoptotic processes selectively in the tumor.

References


[End of Document]