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Introduction 
The local inflammatory reaction is characterized by an initial increase in blood flow to the site of injury, by 
increased vascular permeability and by an ordered influx of different effector cells, recruited from the 
peripheral blood and bone marrow to the site of lesion (1)  Another characteristic of the inflammatory 
reaction is the presence of hypoxia and its modulation of innate immunity (2).  
In this overview, we will analyze the influence of the hypoxic state on inflammation and compare its 
interaction in diverse disease states including cancer. Interestingly, the body’s response to hypoxia in 
different pathological situations seems to be quite similar. 

Hypoxia as a homeostatic response 
Once hypoxia has developed, the undernourished and hypoxic cells present trigger signals, in order to 
obtain new blood vessels, in order to satisfy their ever-increasing demands. The principal signal activates an 
ancestral oxygen sensor, the hypoxia inducible factor (HIF). HIF is a conserved mechanism of defense 
present in mammals, aimed at reestablishing a supply of oxygen and nutritive substances.  
After its nuclear translocation, HIF triggers a series of mediators such vascular endothelial growth factor 
(VEGF), and chemokines such as Stromal derived growth factor -1 (SDF-1), which orchestrate a series of 
processes able to recruit, from bone marrow, into the hypoxic (tumour) milieu, several immature myeloid, 
mesenchymal and endothelial progenitors cells (2-6). The bone marrow derived cells are of 4 types: 

a) Circulating Endothelial Cells (CECS) (7,8); 

b) Endothelial progenitor cells (EPCs), which are precursors of blood vessels (9,10);  

c) Mesenchymal stem cells (MSCs) (11,12); 

d) Immature myeloid derived cells (MDSCs) (13,14,15,16).
 

CECs and EPCs are cells able to form new blood vessels. MDSCs concur with them to support and promote 

all the reactions useful to angiogenesis, but are unable to form the neovessels alone. MSCs, have the ability 

to transform into fibroblasts, to coordinate the inflammatory reaction, and also to support cells of the stroma
 
(17). In addition , MSCs play an important role in the repair of tissues with lesions and fractures. In the 

tumour, the excessive presence of IL-1 and PGE2 triggers an autocrine process that leads to tumor
 
progression (18). The behavior of MSCs in tumour tissue is different than in myocardial infarction and
 
stroke, where they cooperate to repair the lesion and reducing the inflammatory reaction. In fact, they
 
behave differently in the primary tumour than in metastases, and usually give rise to the tumor associated 

fibroblasts (CAFs) and pericytes (19), that ultimately form a favorable stroma more useful to tumor
 
progression and with immunosuppressive activity. 


When MSCs become triggered by HIF, they participate in the repair of several diseased tissues and organs
 
such as in myocardial infaction (4), stroke (20), fractures (21), rheumatoid arthritis (22), Alzheimers (23), 

Parkinson (24) ulcerative colitis(25) and kidney disease (26). 

In a certain sense, it is possible to demonstrate that the reaction of the organism to a pathogen or other 

danger signal is a normal law of homeostasis and is tightly regulated (see the box below).  


Hypoxia → HIF→ SDF-1-VEGF → CECs-EPCs-MSCs-MDSCs → Neutrophils→ Macrophages
 
→ repair / or remodeling → Hypoxia resolution 

In fact, four to six hours after the start of the ischemic or hypoxic state, partly resident neutrophils provided 
by MDSCs begin to produce a series of free radicals and proteases. In both the heart and the brain, areas of 
ischemia show these reactions which initially seem harmful, somehow sharpening the event (11, 27), 
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however after this cleaning operation they help to decrease the inflammatory reaction. In both stroke and 
myocardial infarction they collaborate through several known mechanisms (11, 27). 

Neutrophils have a very limited life span, going rapidly into apoptosis and releasing among various other 
products lactoferrin. Lactoferrin has the ability to decrease the recruitment and the transmigration of 
neutrophils, permitting the arrival of macrophages. Macrophages not only act as scavengers but they also 
produce abundant immunosuppressive cytokines (TGF-ß; IL-10). Macrophages also produce decoy 
receptors of chemokines that participate to further decrease the inflammatory reaction (26, 28). A more 
recently discovered class of substances able to reduce the inflammatory response have been called 
Resolvins. (29, 30). In summary, the termination or the partial reduction of inflammation coincides with; 
the return of oxygenation, the coordination of leukocyte recruitment followed by macrophage recruitment, 
and finally the production of anti-inflammatory factors including resolvins. 

Tumour hypoxia 
Hypoxia is common in solid tumors, and areas deprived of oxygen and nutrients can develop in many 
different zones of the tumor, including those with strong vascularization (Fig.1). One of the reasons for its 
persistence is that neoplasia grows faster and at a pace not proportional to the neoangiogenesis (31-33). 
This persistence creates a vortex that continue to recruit neutrophils and MDSCs from bone marrow (34). In 
the tumour microenvironment MDSCs transform into type 2 macrophages, the so called M2 that produces 
an excess of molecules such as PGE2, TGF-ß and IL-10. These kinds of molecules can disorient the 
immune system to the point of making it ineffective (35). Furthermore the tumour is unable to produce 
resolvins in an adequate concentration (36- 38) for at least two reasons:  
a) There is not an adequate concentration EPA and DHA in the cell membranes (principal substrates for 
resolvins). 
b) There is an increase in COX-2 enzymes leading to overproduction of PGE2 (37, 38), which are not 
precursors for resolvins.  

This is a circuit that continues to feed itself on the basis of a normal homeostatic response of the organism. 
Tumours follow the general pathways of several diseases in which hypoxia is implicated (i.e. myocardial 
infarction, stroke, etc.), but differs from them significantly in the persistence of this hypoxia and the lack of 
the off switch (resolvins) (Fig.2, 3).  
Another factor that seems to maintain the inflammation is the osmotic pressure. The overproduction of 
VEGF induced by HIF leads to increased vascular permeability, with loss in the interstitial tissue of 
albumin and other proteins. This loss, leads to an increased osmotic pressure that elicits the release of pro-
inflammatory cytokines by macrophages (39 - 41). This factor alone would justify the use of hyperthermia 
for its ability to decrease the interstitial fluid pressure (42, 43).  
Tumour vasculature is not necessarily derived from endothelial cell sprouting; instead, cancer tissue can 
acquire its vasculature by alternative mechanisms, such as vasculogenic mimicry (VM). VM is the hypoxia
adaptation mechanism of tumour vascularisation. Hypoxia-induced VM play an important role in tumour 
progression (44, 45). 

Hypoxia metabolism 
HIF not only plays an important role in inflammation but it also determines the metabolic conversion in 
tumours to anaerobic glycolysis, the so called “Warburg effect”. This increased consumption of glucose and 
its incomplete and inefficient metabolism is due at least at two factors: 
a) An increase in membrane receptors for glucose (Glut-1 membrane protein) and  
b) Blocking of pyruvate dehydrogenase & suppression of pyruvate conversion to acetyl CoA (46-48). 

Hyperthermia and immunity 
Can hyperthermia be used to modify this destructive and cancer-promoting circuit of Hypoxia, 
Inflammation, and then Hypoxia? Is it possible that hyperthermia can affect HIF expression and beyond 
that, immunity against malignancy? 
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This association between hyperthermia and tumor hypoxia & pH response has been known since 1990, in 
large part because of the work of Koutcher JA and Gerweck LE on Glioblastoma and other tumours (49, 
50). What’s more, hyperthermia’s activity as a radiation sensitizer is well known(51 -55). Hyperthermia, in 
almost every way it has been applied, consistently seems to affect immunity through several known 
mechanisms (56 - 58). Hyperthermia enhances the antigenic presentation to effector cells, recruiting 
macrophages, natural killer cells, regulatory cells and neutrophils to the tumour area (56-58). The 
association with radiotherapy and the favorable changes to the tumour microenvironment by hyperthermia, 
as outlined by Muthana, can affect regulatory cell behavior and macrophage activity (59). In fact, the 
concurrent use of hyperthermia with radiotherapy can decrease the recruitment of regulatory cells, 
compared to hyperthermia alone, and also the behaviour of macrophages seems to be affected by this 
association, ultimately decreasing their M2 types (60). The macrophage programming in the tumour 
microenvironment is a hallmark of cancer, with its auto - sustaining abilities regarding inflammation (58). 
The increase of heat shock protein (HSP) induced by hyperthermia (61), particularly HSP 70, has been 
found to act as a recognition structure for natural killer (NK) cells, increasing their activity (62 - 63). In 
vivo hyperthermia triggers innate and adaptive immunity aiding in tumour eradication (65 - 66). 

Conclusions 
The explanation of these specific components of tumour biology in this way is not meant as an 
oversimplification, but is meant as an effort to show that tumour biology is not all chaotic, but that they 
follow some normal routes of repair. Tumours exploit some of the weaknesses of the body, and profit from 
normal attempts of the body to repair and recover organ integrity and functionality. In the words of David B 
Lowe, by minimizing exposure to risk factors that contribute to chronic inflammation, and reconditioning 
the patient into a state of acute inflammation, we could have a significant decrease to cancer incidence and 
improvements to life prolongation (67). Hyperthermia in this context can have a significant role as an 
inducer of acute inflammation (65- 66). 
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