Oncothermia in laboratory

Dr. Nora Meggyeshazi¹, Dr. Tibor Krenacs¹, Dr. Gabor Andocs², Dr. Oliver Szasz³

(1) 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary

(2) Department of Veterinary Clinical Medicine, Faculty of Veterinary Science, Tottori University, Tottori, Japan

(3) Department of Biotechnics, Faculty of Engineering, St. István University, Budapest, Hungary

Oncothermia in laboratory

Theoretical background: The hallmarks of cell death

When is the cell dying? (=point-of-no-return)

- Massive caspase activation
- Mitochondrial transmembrane potential decreases (mitochondrial membrane permebilization)
- PS appears in the outer membrane of the cytoplasm.

When is the cell dead?

- The integrity of plasma membrane is lost
- The cells is fragmented
- The surrounding cells phagocyting the dead ones.
- Kroemer, G., et al., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ, 2005. 12 Suppl 2: p. 1463-7.
- Kroemer, G., et al., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ, 2009. 16(1): p. 3-11.

How many ways to die?

A LOT...

... Extrinsic apoptosis, Caspase dependent intrinsic apoptosis, Caspase independent intrinsic apoptosis, Necroptosis (regulated necrosis), Autophagic cell death, Mitotic cathastrophe, Netosis, Parthantos, Pyroptosis Entosis

• Kroemer, G., et al., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death Differ, 2005. 12 Suppl 2: p. 1463-7.

BUT

What can happen after the cell death? (possible interacions with the immune system)

- Inflammation can occure after accidental necrosis (professional phagocytes are involved)
- No immune reaction (usually in physiological apoptosis)
- Immunogenic cell death can occur after specific apoptosis inducers (photodynamic therapy, chemotherapy)
- Calreticulin exposure
- Membrane appearance of hsp70
- ATP release
- HMGB1 release

Temporospatial pattern on the tumor cells in ICD

Kroemer et al. Journal of Experimental Medicine (2005 Dec 19;202(12):1691-701)

Material and method I: the model and treatment

BALB/c (nu/nu) mice inoculated with HT29 (human colorectal adenocarcinoma) in both femoral region (3*106 cells/0,1 ml) of 6-8 week old females

18 days later single shot treatment for (30 min),

temperature between 41-42 °C. Sampling was carried out: 0, 1,4,8,14,24,48,72,120,168, 216h post-treatment

18 days later 30 min single shot treatment (treated tumor core temperature: 41-42 °C)

Material and method II: molecular biology

Protein name	Clon	Producer
TRAIL-R2	polyclonal	Cell Signaling
Cytochrome-c	136F3	Cell Signaling
AIF	Polyclonal	Cell Signaling
Bax	Polyclonal	Sigma Aldrich
Mitochondrial ag	113-1	BioGenex
hsp70	polyclonal	Cell Signaling
hsp90	Polyclonal	Cell Signaling
hsp60	Polyclonal	Cell Signaling
HMGB1	Polyclonal	Cell Signaling
CRT	Polyclonal	Cell Signaling

Are there signs of immunogenic cell death? Hallmarks of ICD: CRT Hallmarks of ICD: membrane hsp70

Untreated

Hallmarks of ICD: HMGB1 release

Summary

Death upregul	recepto lation in memi	or (TRAIL-R2) in the cytoplasm brane.			
Membra	Membrane Mitochondrial pore formation, cytochrome excitation c release, AIF nuclear translocation		DNA fragmentation and apoptotic body formation, programmed cell death		
	8	14	24		48 (h)
CRT		Elevated hsp70 at	nd hsp 90 expression	HMGB1 release	Possible ICD

Oncothermia causes programmed cell death (as an obligatory event in ICD) with concomittant TRAIL-R2, calreticulin, heat shock protein upregulation and HMGB1 release from the nuclei.