Local treatment with systemic effect

Oliver Szasz1,2, Marcell A. Szasz3

1Biotechnics Department, St. Istvan University, Godollo, Hungary
2Oncotherm Kft./GmbH, Budaors/Troisdorf, Hungary/Germany
3Cancer Center, Semmelweis University, Budapest, Hungary

Presented at 36th ICHS, Budapest, 2018

Cite this article as:
Szasz O. (2018): Local treatment with systemic effect; Oncothermia Journal 24: 496-499
Local treatment with systemic effect

Oliver Szasz
St. Istvan University, Biotechnics Department, Budaors, Hungary (biothech@gek.szie.hu)

Objective
Most of the radiation therapies are local. The local control of the tumor in advanced cases is not enough for effective improvement of survival time, due to the systemic malignant spread forming macro and micro metastases which are the main life-threatening factor of cancerous diseases. The local treatment has to be extended by systemic (abscopal) effect. The appropriate immune-stimuli could extend the local method to systemic and acts disseminated cells in distant metastases, too. Our objective is to present the abscopal effect of modulated electro-hyperthermia (mEHT, oncothermia).

Methods
Non-ionizing radiofrequency (RF) electric current amplitude modulated by the time-fractal technique of relative low carrier frequency (13.56 MHz) is used [1]. The E-class RF-source and the impedance controlled capacitive coupling allows high efficacy targeting selectively the membrane rafts of the malignant cells [2]. The applied nano-selection makes certain deviations of cellular metabolic-processes of malignant cells. The cell-killing mechanism is connected to the nano-range energy absorption. The special process makes it available to present the genetic information of malignant cells to the antigen-presenting cells (APCs). There were various in-vitro and in-vivo immune-histochemical studies proving the selection and its effects.

Results
The method of mEHT causes significant apoptotic tumor-cell death. Mitochondrial Bax and release of Cytochrome C and nuclear translocation of apoptosis inducing factor AIF are measured [3], showing caspase independent and also excited caspase dependent pathways of the signal processes. Immunohistochemistry and apoptosis protein array proved elevated hsp70 and hsp90 expression and release them from the cell. The process forms damage associated molecular pattern (DAMP) concluding to immunogenic cell-death (ICD). The abscopal effect is proven by the in-vivo experiment using an intratumoral dendritic cell (DC) injection together with the mEHT for C3H/He mice inoculated with tumor in femoral region. The non-treated tumor in the abdomen was measured. The whole body antitumor effects are proven, [4]. Furthermore, mEHT plus DC administration significantly inhibits the CT26 tumor growth in BALB/c mice, while even the re-challenging of the tumor inoculation became impossible, [5]. In this case the abscopal effect works like vaccination. The combined mEHT-DC treatment increases the myeloperoxidase concentration and CD3+ cells organizing specific T-cell response, [6].

Conclusion
Text mEHT induces abscopal effect by immune involving processes. Unlike conventional homogeneous heating of the tumor, this local treatment becomes systemic in consequence of the selective excitation of membrane rafts inducing DAMP and ICD. This way mEHT can
create a favorable tumor microenvironment for an immunological chain reaction which improves the success rate of intratumoral dendritic cell immunotherapy

References

1 Szasz A et.al. Oncothermia, Springer, 2010
3 Meggyeshazi N. et.al. Strahlenther Onkol, 190:815-822; 2014
4 Qin W et.al. Oncol Rep 32:2373-2379; 2014
5 Tsang Y-W et al. BMC Cancer 15:708; 2015
6 Meggyeshazi N. Ph.D. theses, Semmelweis University, 2015
Local treatment with systemic effect

Oliver Saspaz,1,2 Marcel A. Saspaz

Biotechnologies Department, St. John’s University, St. Gorazd, Hungary
2Oncothermia Rf/W GmbH, Baden/Baden, Germany
3Cancer Center, Semmelweis University, Budapest, Hungary

INTRODUCTION (maligancy is systemic)

Most of the radiation therapies are local. The local control of the tumor in advanced cases is not enough for effective improvement of survival time due to the systemic malignancy spreading from macro and micro metastasis, which are the main life-threatening factors of cancerous diseases. The local treatment has to be extended by systemic (absortor) effect. The aggregate immune-stimulorum could extend the local method to systemic and act disseminated cells in distant metastases, too. Our objective is to present the absortor effect of modulated electro-hyperthermia (MITE, oncothermia).

METHOD (prerence selection of targets)

Non-contact radial frequency (RF) electric current amplitude modulated by the time-fractal technique of multiple low carrier frequency (12.5619 kHz) is used [1].

Selection by

1. Electric conductivity (metabolic differences, Warburg effect)
 - Due to high metabolic rate, the tumor cell concentration is high and subsequently the conductivity selects.

2. Electric permittivity (survivable tissue, bioregion effect)
 - Due to missing cellular network, extracellular matrix of malignant cells take high distal permittivity by selection.

3. 5 kHz Frequency dispersion (protein expression, Schwan effect)
 - Due to large number of clusters of transmembrane proteins the protein-lipid complex is attacked.

RESULTS

The high-efficiency (E-class) RF-source and the impedance-controlled capacitive coupling with a precise control allows to use electric current inside of point wave radiation allowing high efficacy targeting selectively the membrane rafts of the malignant cells (2). The precise and automatic tuning makes high efficiency impedance matching and energy absorption, using only 150W maximum power and max. 1.2W reflected one. Due to the step-up heating protocol the average power is 300W treatments.

CONCLUSION

MITE’s absortor effect by immune involving processes. Unlike conventional homogeneous heating of tumor, this local treatment becomes systemic in consequence of the selective excitation of membrane rafts inducing DAMP and ICD. On this way MITE can create a favorable tumor microenvironment for an immunological chain reaction which improves the success rate of intratumoral dendritic cell immunotherapy. Research for the ratio of exosomes and other small vesicles in the absortor effect and the crosstalk between the primary and metabolic lesions is in progress.

REFERENCES