Radiotherapy and modulated electro-hyperthermia effect on Panc1 and Capan1 pancreas adenocarcinoma cell lines

Forika Gertrud
1st Department of Pathology and Experimental Cancer Research
Semmelweis University, Budapest, Hungary

Presented at 36th ICHS, Budapest, 2018

Cite this article as:
Radiotherapy and modulated electro-hyperthermia effect on Panc1 and Capan1 pancreas adenocarcinoma cell lines

Gertrud Forika1, Andrea Balogh2, Tamás Vancsik1, Zoltán Benyo2, Tibor Krenacs1

1Semmelweis University, 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
2Semmelweis University, Institute of Clinical Experimental Research, Budapest, Hungary

Background & Objective
The majority of pancreas malignancies are adenocarcinomas, which show poor outcome. Despite of sophisticated chemotherapy guidelines, those tumor types react very poorly to any treatment regimens, thus new combinations and treatment approaches are intensively searched for. Modulated electro-hyperthermia (mEHT) is a complementary non-invasive cancer treatment modality which uses impedance-coupled radiofrequency to generate selective cell stress and destruction at $<42^\circ\text{C}$ in malignant tissue. Here we studied the mechanism of action of mEHT treatment alone and in combination with radiotherapy in Panc-1 and Capan-1, two aggressive pancreas adenocarcinoma cell lines.

Methods
Panc-1 and Capan-1 cells grown on coverslips were treated with mEHT using LabEHY100 (OncothermTM) for 60 minutes, irradiated with 2 Gy using 137 Cs source or exposed to combined therapy. To evaluate the effect of treatment on cell death morphological changes were analyzed, apoptosis was measured using Annexin V/7-AAD staining, the ALDH+ cancer stem cell fraction (CSC) and also the presence of phosphorylated gamma histone H2AX (using both immunocytochemistry and flow cytometry).

Results
Morphological changes (apoptotic bodies, dead cell residues) were observed in both cell lines treated with mEHT. The late apoptotic cell fraction (Annexin V+/7-AAD+) was significantly higher in mEHT alone or 2 Gy + mEHT treated samples than in the irradiated or control groups. The CSC fraction decreased both after mEHT or combined mEHT-radiotherapy treatments, while radiotherapy alone had no remarkable effect on CSC population. The γ-H2AX was upregulated in all treated samples detected by both immunocytochemistry and flow cytometry.

Conclusion
mEHT induced massive apoptosis in both cell lines tested and sensitized cells to radiation. Elevated levels of the double DNA-strand break marker γ-H2AX in mEHT treated samples suggest that the primary mechanism of tumor destruction by mEHT is the induction of DNA lesions, which ultimately lead to apoptosis. Furthermore, mEHT alone or combined with radiation significantly reduced the ALDH+ CSC population.

This study was founded by the NKFIH-NVKP_16-1-2016-0042 grant.
Radiotherapy and modulated electro-hyperthermia effect on Panc1 and Capan1 pancreas adenocarcinoma cell lines

Fórika Gertrúd

1st Department of Pathology and Experimental Cancer Research

Pancreas malignancies

Statistics:
8.2% survival rate for 5 years
Mortality/incidency index: 98%

Actual treatments:
Surgical
Gemcitabine, Erlotinib, FOLFIRINOX
Pancreas adenocarcinoma cell lines

Panc1:
1975 isolated from a ductal adenocarcinoma
Good model for radio-chemoresistivity
Numerous metastases *in vivo*
High tumor stem cell rate

Capan1:
Isolated from a liver metastasis of pancreatic adenocarcinoma
Good model for radio-chemoresistivity

mEHT treatment *in vitro*

Modulated electro-hipertermia (mEHT):
- Complementary therapy to radio- or chemotherapy
- Non invasive
- 13.56 MHz radiofrequency -> electric field -> 42°C heat
- Selective: elevated glycolysis, ion concentration and conductivity

Heat control with power adjustment
Aim of the work

- Is mEHT treatment effective on Panc1 and Capan1 cell lines?
- Can mEHT treatment support radiotherapy on tumor cell destruction?
- Combination therapy is effective on tumor stem cells too?

60 min mEHT treatment – Panc1

Cell destruction after 24 hours

HE - 24 H

γH2Ax - 24 H

Annexin V and Propidium iodide staining
60 min mEHT treatment – Capan1

Cell destruction and cell stress after 24 hours

Control

mEHT

HE - 24 H

Control

mEHT

Hsp27 - 24 H

Annexin V and Propidium iodide staining

60 min mEHT treatment – Ki67

Panc1

Ki67: proliferation marker – present in active cell cycle

Kontroll

mEHT

Capan1
Combination treatment: 60 min mEHT + 2Gy radiotherapy 3x

Combined treatment: Live/dead cell rate

Panc1

Capan1

LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit - two population: weak signal = living cells, strong signal = dead cells
Combined treatment: Stem cell ratio

Panc1

Capan1

ALDH — aldehyde dehydrogenase — highly expressed by tumor stem cells
ALDEFLUOR Kit — using to detect the ALDH expressing cell amount by flow cytometry

Conclusions

• Both cell lines (Panc1, Capan1) are suitable for mEHT treatment study
• 1X60 minutes mEHT can lead to a massive apoptosis and cell stress
• Combined with radiotherapy, mEHT potentiate the effectivity of the treatment
• Tumor stem cells are sensitive for mEHT or for combined treatment despite of their resistance for the radiotherapy alone
Thank you for your attention

Special thanks to:
- Balogh Andrea
- Mátrayné Balogh Éva
- Vancsik Tamás

This study was founded by the NKFIH-NVKP_16-1-2016-0042 grant