Treatment of a locally advanced triple negative breast cancer with oncothermia

Tamas Garay 1,2, Erika Borbenyi1, Marcell A Szász1, Janina Kulka3, Lilla Madaras3, Adam Somorácz3, Gergo Lóránt1, Bela Akos Molnar4, Tamas Gyorke5, Hajna Galgoczy5, Janos Gyebnar6, Zsolt Varga6, Gyonygver Szentmartoni1, Zsuzsanna Nemeth1, Magdolna Dank 1

1 Cancer Center, Semmelweis University, Budapest, Hungary
2 Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, Budapest, Hungary
3 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
4 1st Department of Surgery, Semmelweis University, Budapest, Hungary
5 Department of Nuclear Medicine, Semmelweis University, Budapest, Hungary

Presented at 36th ICHS, Budapest, 2018

Cite this article as:
Treatment of a locally advanced triple negative breast cancer with oncothermia

Tamas Garay 1,2, Erika Borbenyi1, Marcell A Szász1, Janina Kulka3, Lilla Madaras3, Adam Somorácz3, Gergo Lóránt3, Bela Akos Molnar4, Tamas Gyorke5, Hajna Galgoczy5, Janos Gyebnar5, Zsolt Varga5, Gyonygver Szentmartoni1, Zsuzsanna Nemeth1, Magdolna Dank 1

1 Cancer Center, Semmelweis University, Budapest, Hungary
2 Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, Budapest, Hungary
3 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
4 1st Department of Surgery, Semmelweis University, Budapest, Hungary
5 Department of Nuclear Medicine, Semmelweis University, Budapest, Hungary

Background
Oncothermia (also known as modulated electro-hyperthermia, mEHT) is a current development among the conventional heating methods applied in oncology. mEHT can be considered as curative or palliative treatment for advanced stage, or elderly cancer patients with poor performance status and and/or multiple co-morbidities that otherwise limit the treatment options.

Aim
Here we report the case of 73-year-old patient diagnosed with grade III triple negative breast cancer (TNBC) with 10% TILs who was successfully treated with mEHT and went into complete remission.

Patient presentation: Diagnosis was set up following PET/CT scan that showed breast tumor (18mm) with lymph node involvement (20mm) in left breast and axilla, that followed a core biopsy revealing grade III, triple negative breast cancer with 10% TILs in April and May 2017, respectively. Neoadjuvant platinum- and taxane-based chemotherapy was administered concomitantly with 24 sessions of mEHT at the Cancer Center of Semmelweis University with the instrument EHY-2000 (Oncotherm Ltd., Budaörs, Hungary). mEHT treatment was performed with power starting at 30-60 Watt with 5-Watt steps every 6 minutes to 50-105 Watt. In two sessions lower maximum power was achieved as the patient’s skin showed signs for light burning. Effect of the treatment was clearly demonstrated first in June 2017 with tumor size shrinkage of 11mm and 16mm measured with ultrasound and mammography, respectively. A second ultrasound examination in October 2017 showed 10 mm tumor and the following PET/CT identified 8×3 mm lesion. In November, same year, pathological complete response (pCR) was achieved as no visible tumor was seen via mammography and after sector resection and axillary dissection as no tumor cells were detected by microscopic examination. Patient recovered well from chemotherapy side effects and operation.

Discussion: Complete pathological response was observed in a grade III, triple negative breast cancer after neoadjuvant platinum- and taxane-based chemotherapy and concomitant mEHT treatment. The highest proportion of breast cancer cases reaching pCR following neoadjuvant chemotherapy is in the TNBC subset. Relatively high amount of tumor infiltrating lymphocytes at time of core biopsy and lack of specific immune stimulating treatment might be a sign of the immune-involvement in the molecular mechanism underlying the positive effect of mEHT treatment. Further research is needed to make effects and mechanisms of mEHT treatment deeper understood and its application more accepted.

Grant support: NVKP_16-1-2016-0042
Treatment of a locally advanced triple negative breast cancer with oncothermia

Garay T1,2, Borbélyi E1, Szász AM1, Kulka J1, Madaras L1, Somorácz Á1, Lóránt G1, Molnár BÁ1, Győrök T1, Galgóczi H1, Gyebnár JN1, Varga Zs1, Szentmártoni Gy1, Németh Zs1, Dank M1

1 Faculty of Information Technology and Bionics, Pannon University, Hajdú-Bihar, Hungary
2 Department of Pathology, Semmelweis University, Budapest, Hungary
3 Department of Nuclear Medicine, Semmelweis University, Budapest, Hungary
4 Department of Nuclear Medicine, Semmelweis University, Budapest, Hungary
5 Department of Surgery, Semmelweis University, Budapest, Hungary
6 Department of Nuclear Medicine, Semmelweis University, Budapest, Hungary

Background: Oncothermia (also known as modulated electro-hyperthermia, mEHT) is a current development among the conventional heating methods applied in oncology. mEHT can be considered as curative or palliative treatment for advanced stage or elderly cancer patients with poor performance status and/or multiple comorbidities that otherwise limit the treatment options.

Aim: Here we report the case of a 73-year-old patient diagnosed with grade III, triple negative breast cancer with 10% TILs who was successfully treated with mEHT and went into complete remission.

Diagnosis and chemotherapy: Diagnosis was set up following PET/CT scan that showed breast tumor (18 mm) with lymph node involvement (2 cm) in left breast and axilla, that followed a core biopsy revealing grade III, triple negative breast cancer with 10% TILs in April and May 2017, respectively. Neoadjuvant platinum- and taxane-based chemotherapy was administered concomitantly with 24 sessions of mEHT at the Cancer Center of Semmelweis University with the instrument EHT-2000 (Oncotherm Ltd., Budapest, Hungary).

Figure 1: Histological appearance of the core biopsy displaying high grade invasive ductal carcinoma /NOS/ (H&E stains, 4× and 40× magnification).

Table 1: Applied mEHT treatment. mEHT treatment was performed with power starting at 30–60 Watt with 5-Watt steps every 6 minutes to 50–105 Watt. In two sessions lower maximum power was achieved as the patient's skin showed signs for light burning.

Table 2. Pre and post-treatment PET/CT scans. The primary tumor (A) and the lymph node metastasis (B) in April 2017 and the location of the regressed tumor in November 2017 (C).

Effect of the treatment was clearly demonstrated first in June 2017 with tumor size shrinkage of 11 mm and 16 mm measured with ultrasound and mammography, respectively. A second ultrasound examination in October 2017 showed 10 mm tumor and the following PET/CT identified 8×3 mm lesion. In November, same year, complete pathological response was achieved as no viable tumor was seen via mammography and after sentinel resection and axillary dissection as no tumor cells were detected by microscopic examination. Patient recovered well from chemotherapy side effects and operation.

Discussion: Complete pathological response was observed in a grade III, triple negative breast cancer after neoadjuvant platinum- and taxane-based chemotherapy and concomitant mEHT treatment. However, around one third of triple negative breast cancer patients' respond well to chemotherapy, the relatively high amount of tumor infiltrating lymphocytes at time of core biopsy and lack of specific immune stimulating treatment might be a sign of the determining contribution of mEHT to the pathological response. Moreover, this case suggests the immune-involved in the molecular mechanism underlying the positive effect of mEHT treatment. Further research is needed to make effects and mechanisms of mEHT treatment deeper understood and its application more accepted.

Grant support: NYKP_16-1-2016-0842