Tumor-directed immunotherapy: combined radiotherapy and oncothermia

Kwan-Hwa Chi
Professor, National Yang-Ming Medical University
Chairman, Department of Radiation Therapy & Oncology, Shin-Kong Memorial Hospital, Taipei

Presented at 36th ICHS, Budapest, 2018

Cite this article as:
Chi KH. (2018): Tumor-directed immunotherapy: combined radiotherapy and oncothermia; Oncothermia Journal 24:196-235
Tumor-directed immunotherapy: combined radiotherapy and oncothermia

Kwan-Hwa Chi
Chairman, Department of Radiation Therapy & Oncology, Shin Kong Wu Ho-Su Memorial Hospital
Professor, National Yang-Ming University

Objective
Radiotherapy is an important part of cancer treatment. Hyperthermia has long been regarded as one of the best radiosensitization method. Oncothermia is a new kind of hyperthermia machine emphasizing energy absorbed on tumor cell membrane instead of nonspecific temperature rising around the treatment region. We proposed that oncothermia may have immune potentiation effect besides its radio(chemo)-sensitization effect.

Methods
We aimed to examine, how real the abscopal events and what is the therapeutic effect of combined oncothermia and RT. Patients treated with combined RT and oncothermia since January 2017 till December 2017 at Shin-Kong Hospital, Taipei were retrospectively reviewed. We analyzed those who have measurable disease, performance status ≤ 2, a minimal RT dose of 30Gy and at least 4 times of oncothermia treatments. The primary prostate cancers were excluded.

Results
There were 60 patients evaluable, 27 patients with localized disease, in whom RT were the main treatment. Among them the CR rate was 22.2%, PR rate was 55.5%, SD with 14.8%. Two patients (one phylloid tumor of breast and one pancreatic cancer) were progressive disease after treatment. Most patients had acceptable local control for a median follow-up time of 9 months. Thirty-three patients with metastatic disease received palliative RT for a total of 38 sites, with a median dose of 44Gy/22fx to major disease sites. Patients with CR/PR has much longer survival than those not (SD+PD) (P<0.001). Shallower tumor (<5cm below skin) seemed to have better effect than deeper tumor, but not significant (P>0.1). The objective response (CR+PR) in treated area is 60.7%. Most strikingly, there were obvious abscopal response in 3 patients. All of them had autoimmune reaction from treatment. One patient had autoimmune hepatitis the other one had dermatitis hapefiforms, and one patient had severe myasthenia gravis. They all had long duration of response without systemic treatment.

Conclusion
We reported that the combination of RT and oncothermia is effective and well tolerated. Oncothermia seems to have efficient radiosensitization effect in combined with RT or CCRT. Only randomized trial can answer the real clinical benefit of combined RT+HT on advanced cancer. However, a connection of autoimmunie response is an evidence of immune boosting from oncothermia. Oncothermia activates lymphocyte in situ and provoked abscopal effect with RT. How oncothermia treatment provokes autoimmune reaction can pave the way antitumor immunity is underway.
Tumor-directed immunotherapy: combined radiotherapy and oncothermia

Kwan-Hwa Chi, MD
Professor, National Yang-Ming Medical University
Chairman, Department of Radiation Therapy & Oncology,
Shin-Kong Memorial Hospital, Taipei

Tumor-directed immunotherapy

- Produce specific immune cells that did not exit.
- Activate immune cells that have already home to the tumor/ local LN where tumor antigen present.
- Minimizing irrelevant activation of the rest of immune system.
Goal of in situ vaccination

- Stimulate local anti-tumor immune response
- Generate systemic anti-tumor immune response
- Local control + systemic control
• Immune system is inherently systemic, Not local!
• But local inflammation is much safer than systemic inflammation, if the inflammation should be strong enough.

Methods of in situ vaccination

• Cell death + immune adjuvant (local)
• Tumor targeted immunotherapy
• The role of RT
• The role of HT
STING

• The most important source of STING is endothelial cells.
• The principle controlling source is cyclic GMP-AMP synthase (cGAS)-the cytosolic DNA sensor for STING.
• cGAS STING-IFN is required for DCs cross-priming.
• DNA delivery in a cell contact – dependent manner to DC-tumor interaction.
• Exogenous cGAMP could improve RT effect effectively.
Local hyperthermia treatment of tumors induces CD8^+ T cell-mediated resistance against distal and secondary tumors

Seiko Toraya-Brown, PhD,^a,1^ Mee Rie Sheen, MS,^a,1^ Pei-sheng Zhang, MD, Lei Chen, BS

Nanomedicine: Nanotechnology, Biology, and Medicine
10 (2014) 1273 – 1285
SKH-Hyperthermia Center

Oncothermia EHY-2000

Yamamoto RF-8
Thermatron RF-8 vs Oncothermia

- Both are RF hyperthermia (8MHz vs 13.56 MHz), but different in electrode (capacitive vs radiative capacitive)
- RF-8 maximizing the power to heat, Oncothermia maximizing current (minimizing voltage) with fixed power.
- Oncothermia uses SAR, based on Joule energy absorption for dose; RF-8 uses CEM43Tx, based on temperature.
- The goal of RF-8 is the homogeneous heating of tumor mass, while oncothermia goal is the heterogeneous heating of the membrane rafts of malignant cells.

RF-8 is a more reliable temperature dependent radio(chemo)sensitization machine, but Oncothermia has more Immune sensitization effect.

Why? Really?
Oncothermia is a hyperthermia machine with stronger excitability than heat

1. Cancer cells were excited but exhausted with ATP depletion.
2. Immune cells were excited and activated
Oncothermia as immunotherapy machine?

- Will oncothermia change tumor microenvironment?
- Will oncothermia activate immune cells?
- Will oncothermia intensify the effect of immune checkpoint inhibitors?
- Will oncothermia increase abscopal effect?
- Will oncothermia increase autoimmune reaction?
- Will oncothermia produce tumor hyperprogression?

Significant Elevation of Apoptosis After Oncothermia Treatment

Major immune modulatory functions of heat shock protein 70 (Hsp70)

Stress protein analysis
The release of HSP70 expression

Oncothermia triggered a significantly secretion of HSP70 from cancer cells.
Modulated electro-hyperthermia induced loco-regional and systemic tumor destruction in colorectal cancer allografts
Vancsik T, Krenacs T, et al. 2018
A Dendritic cells (48 h)

mEHT_{left} mEHT_{right}

Vancsik T, Krenacs T, et al. 2018

E T-cell invasion in mEHT_{right} (72 h)

Vancsik T, Krenacs T, et al. 2018
Oncothermia Induced IFN-γ Production in Tumor

Wang YS et al, Unpublished data

Oncothermia as immunotherapy machine?

- Will oncothermia change tumor microenvironment?
- Will oncothermia activate immune cells?
- Will oncothermia intensify the effect of immune checkpoint inhibitors?
- Will oncothermia increase abscopal effect?
- Will oncothermia increase autoimmune reaction?
- Will oncothermia produce tumor hyperprogression?
Retrospective review of our Oncothermia experience:

- All patients were treated with combined radiotherapy and oncothermia with or without other systemic therapy.
- Response was evaluated on irradiated site.
Patient characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>No</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>26</td>
<td>43.3</td>
</tr>
<tr>
<td>Male</td>
<td>34</td>
<td>56.7</td>
</tr>
<tr>
<td>Age, median, range</td>
<td>59.5</td>
<td>36-89</td>
</tr>
<tr>
<td>WHO Performance status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>1</td>
<td>54</td>
<td>90.0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8.3</td>
</tr>
<tr>
<td>Localized disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>27</td>
<td>100</td>
</tr>
<tr>
<td>CT</td>
<td>17</td>
<td>63.0</td>
</tr>
<tr>
<td>IO</td>
<td>1</td>
<td>3.7</td>
</tr>
<tr>
<td>CT+IO</td>
<td>2</td>
<td>7.4</td>
</tr>
<tr>
<td>Metastatic/ Recurrent disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>33</td>
<td>100</td>
</tr>
<tr>
<td>CT</td>
<td>12</td>
<td>36.4</td>
</tr>
<tr>
<td>IO</td>
<td>8</td>
<td>24.2</td>
</tr>
<tr>
<td>CT+IO</td>
<td>8</td>
<td>24.2</td>
</tr>
</tbody>
</table>

Cancer Type

<table>
<thead>
<tr>
<th>Primary cancer site</th>
<th>Localized(N=27)</th>
<th>(%)</th>
<th>Metastatic/ Recurrent(N=33)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast ca</td>
<td>6</td>
<td>22.2</td>
<td>7</td>
<td>21.2</td>
</tr>
<tr>
<td>Lung ca</td>
<td>5</td>
<td>18.5</td>
<td>5</td>
<td>15.2</td>
</tr>
<tr>
<td>HCC</td>
<td>4</td>
<td>14.8</td>
<td>3</td>
<td>9.1</td>
</tr>
<tr>
<td>Head & Neck ca</td>
<td>2</td>
<td>7.4</td>
<td>2</td>
<td>6.1</td>
</tr>
<tr>
<td>Pancreas ca</td>
<td>2</td>
<td>7.4</td>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>Cholangiocarcinoma</td>
<td>1</td>
<td>3.7</td>
<td>3</td>
<td>9.1</td>
</tr>
<tr>
<td>Bladder ca</td>
<td>1</td>
<td>3.7</td>
<td>2</td>
<td>6.1</td>
</tr>
<tr>
<td>Colon ca</td>
<td>1</td>
<td>3.7</td>
<td>2</td>
<td>6.1</td>
</tr>
<tr>
<td>Esophageal cancer</td>
<td>1</td>
<td>3.7</td>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>GBM</td>
<td>1</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thyroid ca</td>
<td>1</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spine tumor</td>
<td>1</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gallbladder ca</td>
<td>1</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prostate ca</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>Gastric ca</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>Cervix cancer</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>Ovary ca</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>Rectal ca</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>Urothelial cancer</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>Uterine sarcoma</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Response rate on the irradiated sites

<table>
<thead>
<tr>
<th>Response</th>
<th>Localized (N=27)</th>
<th>Metastatic/ Recurrent (N=33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>6 (22.2%)</td>
<td>2 (6.1%)</td>
</tr>
<tr>
<td>VGPR*</td>
<td>5 (18.5%)</td>
<td>5 (15.2%)</td>
</tr>
<tr>
<td>PR</td>
<td>10 (37.0%)</td>
<td>13 (39.4%)</td>
</tr>
<tr>
<td>SD</td>
<td>4 (14.8%)</td>
<td>9 (27.3%)</td>
</tr>
<tr>
<td>PD</td>
<td>2 (7.4%)</td>
<td>4 (12.1%)</td>
</tr>
</tbody>
</table>

*VGPR = Very good CR, mean >90% shrinkage

Response rate according to tumor size analysis for all patients

<table>
<thead>
<tr>
<th>Tumor volume</th>
<th>CR/PR (%)</th>
<th>SD/PD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTV ≤500cm³ (N=12)</td>
<td>11 (91.7)</td>
<td>1 (8.3)</td>
</tr>
<tr>
<td>GTV <500cm³ (N=48)</td>
<td>30 (62.5)</td>
<td>18 (37.5)</td>
</tr>
</tbody>
</table>

P=0.049*
Treatment toxicity (CTCAE v4.0)

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Case number (N)</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin toxicity</td>
<td>1*</td>
<td>1</td>
</tr>
<tr>
<td>Hepatic toxicity</td>
<td>1*</td>
<td>3</td>
</tr>
<tr>
<td>Myelotoxicity</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neurotoxicity</td>
<td>1*</td>
<td>3</td>
</tr>
<tr>
<td>Renal toxicity</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pneumonitis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Soft tissue damage</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fever</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fat induration</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*auto-immune reaction

許*毓 Hepatoma

2016/10/16 治療前CT
20170525治療後CT
王*豪 Cholangiocarcinoma

20170608治療前CT 20170731治療中CT

曾*耀 Hepatoma

20161201治療前CT 20170216最後一天治療完CT
鄭*玲 05537437

治療前

治療後

陳*鳳 20067028

20170328治療前CT

20171024治療後CT

20171226治療後追蹤CT
Nao Breast ca

20161206 治療前
20171017 治療後

Tak Small cell lung cancer

20170509 治療前CT
20171003 治療後CT
葉*宏 Esophageal cancer

20170322 治療前PET-CT 20170913 治療後PET-CT 20171229 治療後持續追蹤PET-CT 20180419 治療後持續追蹤PET-CT

徐*雲 15739025 Lung

20171026 治療後PET-CT 20170103 治療前PET-CT
余**雲 Cervix cancer lung mets

張*正 Stomach cancer peritoneal seedings
Oncothermia as immunotherapy machine?

- Will oncothermia change tumor microenvironment?
- Will oncothermia activate immune cells?
- Will oncothermia increase abscopal effect?
- Will oncothermia increase autoimmune reaction?
- Will oncothermia produce tumor hyperprogression?
- Will oncothermia intensify the effect of immune checkpoint inhibitors?

There were 3 patients out of 33 patients developed autoimmune disease, all of them had more than 8 month of treatment-free interval.
Figure 2: Kinetics of appearance of irAEs according to organ system involved [11]; adapted with permission from Weber et al. 2012 [11].

Triple negative locally advanced breast cancer patients

RT 2/22-3/29 total dose 50Gy

4/17-till now Good response, 5/26 pCR

4/20 autoimmune hepatitis

Oncothermia for 7 times,
謝*真 11730458

Breast ca with Lung Metastasis

2017/2/16 熱療前 2017/7/12 熱療後

20180328 CT 20180628 CT 20180730 CT

Chi KH et al, Unpublished data
Rt. UCC of renal pelvis with abdomen and liver meta.
RT to abdomen mass 40Gy +OT x 6
Rt. UCC of renal pelvis with abdomen and liver meta.
RT to abdomen mass 40Gy +OT x 6

20170521治療前CT 20170821治療第一階段完CT

Abscopal Effect on Liver mass (no liver irradiation)
Cholangiocarcinoma with Liver Metastasis

Chi KH et al, Unpublished data
Oncothermia as immunotherapy machine?

- Will oncothermia change tumor microenvironment?
- Will oncothermia activate immune cells?
- Will oncothermia increase abscopal effect?
- Will oncothermia increase autoimmune reaction?
- Will oncothermia produce tumor hyperprogression?
- Will oncothermia intensify the effect of immune checkpoint inhibitors?
What we have learned?

• OT must has some radio-sensitization effect.
• Long lasting response only comes with autoimmune reaction. The incidence is 3 out of 33 (9.1%). The incidence of combined GM-CSF + RT is 2/41 (4.9%) if only >90% shrinkage of tumor were counted.
• Large and non-deep seated tumors seemed to have better response by RT + OT.
• Checkpoint inhibitors did not increase the response rates from RT + OT. But severe autoimmune response may be resulted.
How to increase autoimmune response by radiotherapy + oncothermia?

- Anti-CTLA 4 / Anti-PD1?
- GM-CSF
- By detecting pathogens to induce autoimmunity?
- Harness innate immunity cells to adaptive immunity?
- γδ T cells?
- Anti-oxidant?
Create the inflammatory Microenvironment by IR

Enhance the inflammatory Microenvironment by mEHT

Anti-oxidant enhance T cell survival under tumor microenvironment

Immune checkpoint inhibitor disorder the regulation of immune system

Autoimmune and anti-tumor activity
Combination of mEHT induced local anti-tumor effect of DC therapy in vivo

1. mEHT-DC therapy significantly delayed local tumor growth.
2. Complete tumor regression was observed in 5 out of 7 mice in this group.

Tsang et al. BMC Cancer 2015; 15:708

Combination of mEHT induced systemic anti-tumor effect of DC therapy in vivo

Rechallenge a secondary tumor one month later

mEHT-DC showed complete rejection of a secondary rechallenge

Tsang et al. BMC Cancer 2015; 15:708
To assess the cytotoxicity of γδ T cells on mEHT treated tumor cells

- Cytotoxicity assay
- The time lapse live video (TLLV) microscopy
- Migration assay

To assess the cytotoxicity of γδ T cells on mEHT treated tumor cells
To assess the cytotoxicity of γδT cells on mEHT treated tumor cells

A549 with γδT during 16hr coculture

<table>
<thead>
<tr>
<th>0 hr</th>
<th>4 hr</th>
<th>6 hr</th>
<th>8 hr</th>
<th>10 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>37°C Control</td>
<td>38°C Waterbath</td>
<td>38°C mEHT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ γδ T cells

To assess the cytotoxicity of γδT cells with or without mEHT treated tumor cells

A549 with γδT during 16hr coculture

37°C Control | 38°C Waterbath | 38°C mEHT

25min/second

• mEHT treatment can enhance γδT cell cytotoxicity
To assess the migration ability of γδ T cells
After mEHT treatment

- mEHT treatment can enhance γδ T cell migration towards tumor cells

To assess the anti-tumor effect of γδ T cells on mEHT-treated tumor bearing mice

Thank you for your attention!