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One of the most frequently applied bioelectromagnetic effects is the deep heating of 
living species with electromotive force energy. Despite its long history, hyperthermia is a 
rarely applied oncotherapy because of controversial results and complicated control. The 
challenge in clinical studies of oncological hyperthermia is the disharmony of the local 
response and local control with overall survival. Both whole‑body (complete isothermia 
for the body) and local  (isothermia for the chosen target) heating show excellent local 
effects; however, this is not followed with the expected elongation of survival time. 
A possible solution could be nonisothermal heating to the heterogeneity of the malignancy 
itself. The distinguishing parameters to select the target are the electromagnetic properties 
of the malignant tissue together with the physiological differences between malignant 
cells and their healthy counterparts. Selection could allow for cellular targeting, generating 
natural reactions, such as programmed cell death (apoptosis) followed by immunogenic 
cell death involving extended immune reactions. This complex method is a new kind 
of hyperthermia, named modulated electrohyperthermia  (tradename oncothermia). The 
selective, nonequilibrium energy absorption is well synergized with modern radiation 
therapies, presenting a solution of an active and controllable tumor‑specific immune 
reaction and subsequent abscopal effects.

Keywords: Abscopal effect, apoptosis, electromagnetic effects, immunogenic 
cell death, ionizing, modulated electrohyperthermia, oncothermia, radiofrequency 
current, radiotherapy

Thermal and Nonthermal Effects of Radiofrequency on Living State 
and Applications as an Adjuvant with Radiation Therapy
Andras Szasz

Access this article online
Quick Response Code:

Website: www.journalrcr.org

DOI: 10.4103/jrcr.jrcr_25_18

electromagnetic heating techniques at the end of the 
19th  century renewed medical heating methodology. 
Methods to heat up the whole body or specific regions 
were developed rapidly.

Two concepts of electromagnetic energy absorption as 
oncological treatment were developed in parallel by Carl 
D.W. Busch  (1826–1881) in Germany and the French 
physician Arsene d’Arsonval  (1851–1940), who worked 
out the temperature‑based and electromagnetic field 
effects, respectively. In the first half of the 20th  century, 
the market competition between the two methods was 
decided when Siemens, the largest producer of medical 
devices, launched heating devices with emphasis on 
temperature growth.

Review Article

Introduction

Hyperthermia is an ancient treatment. Fire and the 
Sun, as the overall energy source of the Earth, had 

symbolic significance in ancient human cultures. As 
a consequence, heat delivery was naturally a medical 
possibility. Application of heat for tumors was used 
in ancient medicine, and the first description of this 
particular treatment was made by Hippocrates.

The original idea of hyperthermia was based on a simple 
principle: the heated tumor exhibits an accelerated 
metabolism without extra supply and the “starving” tumor 
destroys itself by acidosis. This approach is supported 
by the impoverishment of  Adenosine triphosphate and 
enrichment of lactate in treated tumors,[1] and furthermore, 
due to the change in energy consumption, the tumors are 
more sensitive to heating than their healthy counterparts.

Various heat deliveries were applied in the middle ages 
for tumors mainly for ablative intention. The birth of 
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At the same time, oncological hyperthermia turned to 
electromagnetic direction, the birth of ionizing radiation 
by the discovery of X‑rays by Wilhelm Conrad Rontgen 
(1845–1923) occurred at the end of the 19th century. The 
first textbook on radiotherapy  (RT) was published in 
1903,[2] and publications continued afterward, building 
RT as one of the three “gold‑standard columns” of 
monotherapies.

Oncological hyperthermia could not reach the status 
of the widely accepted “gold standard.” Despite the 
long history of the method, its medical applications 
are relatively rare; its recognition is similar to that of 
therapies at their infancy. Despite the statistical evidence 
in research and clinical applications, hyperthermia could 
not break through the limitations of the last alternative in 
late palliative care. Effects of oncological hyperthermia 
are mostly acknowledged, but the clinical evidence has 
many challenging problems.[3]

The main success of hyperthermia lies in its 
complementary applications and mostly in combination 
with RT. Sensitizing classical ionizing radiation by 
hyperthermia is unambiguous,[4‑7] and the synergy 
between methods is well known[8,9] and has been 
successfully applied.[10‑12] The success of complementary 
treatments with RT has a broad spectrum of evidence[13‑17] 
and is well summarised by various review articles.[18‑21] 
To characterize the gain, the thermal enhancement ratio 
was introduced.[22]

The complementary effects exhibit three aspects that act 
in parallel:
1.	 Radiation is most effective in M and G1 phases of 

the cell cycle in relatively alkaline, well‑oxygenated 
regions, while hyperthermia predominantly acts in S 
phase[23] in moderately acidic, hypoxic regions, which 
complements the cell cycle arrest

2.	 Various other molecular parameters increase to 
sensitizing effect,[24] e.g., heat‑induced decrease of 
DNA‑dependent protein kinase[25]

3.	 Hyperthermia physiologically increases the 
blood flow by vasodilatation to regulate thermal 
homeostasis, compensating for the increased 
temperature by cooling blood flow, which delivers 
extended oxygen supply for radio effects.[26,27]

The last point of synergy is contradictory. It naturally 
opposes the original “starvation” concept, because 
the higher metabolic rate of the proliferating mass 
compensates for the missing supply by nonlinearly 
increasing blood flow.[28‑30] The effects of higher 
radiosensitivity begin to compete with the number of 
nutrients by vasodilation and better perfusion through 
the vessel walls. On the other hand, in massive tumors 

the neo‑angiogenic arteries do not vasodilate, as they 
lack musculature in their vessel wall.[31] In this way, the 
healthy and malignant tissues differ in their reaction to 
heat.[32] It has been shown that an increase in temperature 
can cause vasoconstriction in certain tumors, leading to 
decreased blood perfusion and heat conduction,[28,29,33] 
while causing vasodilatation in healthy tissues leading to 
increased relative blood perfusion and heat conduction 
in this region.[34,35] Blood perfusion of the tumor relative 
to the surrounding healthy tissue is always lower[35] 
and thus could provide an effective heat trap.[36] The 
bloodstream compensates for the overheating by 
regulating the flow capacity of the vessels, and as a 
result of this physiological feedback, effective vascular 
response to heating is observed. The bloodstream 
has a central role in maintaining overall homeostasis, 
not only by temperature regulation but also by other 
parameters (e.g., acid‑alkaline equilibrium, glucose 
delivery, and immune actions). The vascular response 
to heating differs in malignant tissues compared with 
healthy tissues over a tumor‑specific threshold. Over 
the threshold, vasocontraction occurs instead of the 
vasodilatation, which downregulates the oxygenation 
and lowers the efficacy of RT.[27]  Furthermore, over 
the threshold downregulating natural killer cell 
cytotoxicity[37] and other immune actions[38] appears 
too. The tumor blood flow also exhibits tumor‑specific 
changes from approximately 38°C.[32] Substantial cellular 
damage has been observed at temperatures above 
41°C–42°C.[39] There is a limit with the cellular phase 
transition at approximately 42.5°C,[40] which surprisingly 
fits the results of the Arrhenius plot.[41,42]

Reduced survival, despite local success, was observed 
in clinical studies at high‑level evidence of oncological 
hyperthermia. One of the first phase III trials 
investigating thermo‑RT compared with RT alone by 
extensive international cooperation for breast cancer 
showed clear and significant local remission, although 
the overall survival was unchanged.[43] Another study 
observed that the local progression‑free survival of 
breast cancer was improved by thermo‑RT, although the 
survival time was better with RT alone.[44] Additional 
development of distant metastases was shown when 
hyperthermia was combined with RT compared with 
earlier data.[45] Interestingly, when local control was 
not successful, the survival rate was better by RT alone 
than in addition of thermal treatment.[43] A similar study 
found evidence of toxicity.[20]

Pelvic localizations were studied in one of the flagship 
trials of oncological hyperthermia.[10] Local control 
for cervix tumors showed strongly significant results. 
Nevertheless, the local effects on bladder and rectum 

[Downloaded free from http://www.journalrcr.org on Tuesday, June 4, 2019, IP: 82.141.158.2]



Szasz: Thermal and nonthermal effects of radiofrequency on living state and applications as an adjuvant with radiation therapy

3Journal of Radiation and Cancer Research  ¦  Volume 10  ¦  Issue 1  ¦  January-March 2019

tumors were not significant, but were positive for 
thermal treatments. However, the change in survival 
time was significant only in the cervix cohort and was 
not favorable in rectum and bladder tumors. Later, the 
cervix results were questioned by a controlled study,[46] 
which showed improvement of the local control but 
worsening of the survival time by hyperthermia in 
addition to RT.

Further study of uterine cervix carcinomas showed 
a benefit in terms of survival,[47] but newer critics 
have questioned this result.[48,49] Other high‑level 
evidence, a phase III trial of cervical carcinomas with 
complementary hyperthermia and brachytherapy, 
registered the same controversies between survival time 
and local control involving 224 patients.[50] A recent study 
of cervical carcinomas[51] was also inconclusive in the 
comparison of RT‑based differences of complementary 
chemotherapy (CT) or hyperthermia, and thus, the study 
was terminated. The interim results showed, however, 
that the event‑free survival was slightly worse in the 
thermo‑RT group than in the chemo‑RT group, but the 
difference was not statistically significant.

It is not only the cervical carcinoma studies that suffer 
from controversy between survival time and local control. 
A  study on locally advanced nonsmall cell lung cancer 
(NSCLC) also showed significant improvement of the 
overall response rate in local measures, although there 
was no change in overall survival.[52] Later, a multicenter 
phase III trial for NSCLC showed no improvements in 
overall survival in the hyperthermia cohort.[53] The cause 
was directly shown: the appearance of distant metastases 
was five‑times higher (10/2; P = 0.07) in the thermo‑RT 
group compared with RT alone.[53]

Other recent findings in heatable surface tumors show 
the same contradiction between the local control and 
survival rate.[54] A recent study found that the local 
control was better when less energy was administered 
than prescribed.[55]

The dissemination of malignant cells most likely causes 
the poor results of the survival rate, forming micro‑ and 
later macro‑metastases. These controversial data are 
questioning the successful applicability of heat therapy 
in oncology and the hope of a promising approach[56] 
could be lost.

However, the data showing highly significant 
improvement of local control obtained with hyperthermia 
and RT represent facts that we must consider as the basis 
for further development of oncological hyperthermia 
and to correct the problems with overall survival. To 
overcome the issues, we must concentrate on blocking 
invasion and reducing dissemination. The task is to 

prevent formation of metastases caused by heating. 
Furthermore, we may eliminate the metastases formed 
earlier, before thermal treatment with local hyperthermia 
of the primary tumor.

To overcome this problem, we have modified the 
isothermal concept of oncological hyperthermia to 
heterogenic, selective heating by bioelectromagnetic 
selection and excitation of apoptotic pathways of 
malignant cells by the absorbed energy. The method is 
a new kind of hyperthermia, introduced as modulated 
electrohyperthermia (mEHT; tradename, oncothermia).[57]

Methods
The applied hyperthermia technique was the mEHT 
method, which uses capacitively coupled energy-transfer 
[Figure 1].[58] Capacitive coupling technique  (CCT) is a 
relatively old technical solution. The first CCT device 
was marketed under the name “Universal Thermoflux” by 
Siemens. It was later further developed and launched to 
market by the name of Radiotherm in the early 1930s. The 
first modern medically oriented CCT was published in 1976 
by H.H. LeVeen[59] and has been widely applied since.[60‑64]

The capacitor in CCT is formed by the approximately 
plane‑parallel electrodes and ensures a homogeneous 
temperature in the deep‑seated target by regulating the 
applied size ratios of the electrodes. However, living 
structures form very heterogeneous impedances and 
well‑controlled heat‑sinks by physiological regulatory 
signals. Due to these conditions, the CCT technique has 
drawbacks when the task request is localized isothermal 
heating in depth.

The concept of heating by mEHT differs from 
conventional heat therapies. Technically, it uses CCT 
but in a redesigned form, taking a well‑compensated 
resonant circuit to maximize the RF current and at the 
same time minimize the voltage on the electrodes at a 
given output power. The patient is an electric part of the 
preciously tuned system, representing active electrical 
impedance, so it is not simply an “energy absorbent.” 
Approaching the proper impedance matching the solution 
has negligible reflected power (order of 1 W), mimicking 
the galvanic contact with the skin as much as possible.

While the goal of conventional hyperthermia treatment 
is to heat the tumor mass homogeneously, mEHT is 
genuinely breaking the isothermal approach. Instead of 
homogenous heating of the target, mEHT uses excellent 
selection to force absorption of energy on the malignant 
cells, heating them locally to the hyperthermia temperature 
to induce cellular changes in the targeted cells [Figure 2].

The biophysical differences of the malignant cells 
compared with their healthy counterparts allow proper 
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Figure 1: The capacitive system is matched very precisely
Figure 2: mEHT uses the heterogeneous selective heating (a), instead of 
the homogeneous, isothermal one (b)

ba

Figure 3: (a) Surviving fraction after 60 min heat treatment by conventional hyperthermia (HT; water‑bath) and mEHT, for SCCVII (SCC7), a mouse 
head and neck carcinoma cell line in vitro. (b) Ratio of mEHT/HT survival

ba

selection of targeted cells. The biophysical alterations 
of malignant cells are connected to their intensive 
proliferative behavior with lack of apoptotic activity. 
The energy source building new structure is accelerated 
glycolysis, which is measurable by positron‑emission 
tomography  (PET). The consequence of the metabolic 
differences allows for the development of a high ionic 
concentration in the tumor mass; thus, cells can be 
distinguished by the flow of the current.[65]

The other distinguishable characteristic of malignant 
cells is their autonomy. These cells are individual, 
breaking intercellular bonds[66] and junctions,[67] and 
“fighting” with all other cells for metabolic energy. This 
autonomy is recognized by differences in the increased 
dielectric constant of the extracellular electrolyte in the 
near vicinity of malignant cells (Szent‑Gyorgyi effect).[68] 
The high dielectric constants around the malignant cells 
channelizes the RF current.[69]

The RF current exhibits a characteristic dispersion in the 
MHz frequency range (β/δ dispersion[70] and the Schwan 
effect[71]), which concentrates the action on lipid–protein 
interactions, and selects water‑bound states[72] at 
the membrane, using it effectively for appropriate 
targeting.[73] The concentration of lipid rafts on the 
membranes of malignant cells is significantly higher than 
on the membrane of nonmalignant cells.[74] Consequently, 
the dense lipid rafts of the selected malignant cells by 
the above biophysical differences become an easy target 
of the energy absorption. Due to the electric properties 
of the clusters of transmembrane proteins,[75] their 
selection for absorption is automatic.

Results
The synergy of the electric field with temperature‑induced 
changes on malignant cells is tracked from the laboratory 
to the patient’s bed.[76] This complex interaction is 
more effective than conventional hyperthermia.[77] The 
temperature gradient changes membrane processes and 
promotes signaling pathways for natural apoptosis[78] 
instead of thermal necrosis.

The absolute differences between mEHT and 
conventional isothermal hyperthermia with the 
same temperature have been studied in  vitro[79] and 
in  vivo.[80] The temperature of the malignant cells acts 
as if they are at least 3°C higher than the environmental 
average.[81] The selective targeting of mEHT appears 
as mild conventional hyperthermia in the tumor mass, 
averaging the overheated rafts. Consequently, the blood 
flow remains in the optimal fever‑range level,[82‑84] 
avoiding additional adverse processes such as increased 
glucose delivery, increased invasion, and high risk of 
dissemination. The proliferation marker Ki67 has been 
shown to be significantly suppressed by mEHT compared 
with its untreated counterpart.[85] The formation of 
new E‑cadherin‑β‑catenin complexes to bond the cells 
intercellularly helps block invasion, “gluing” the cells to 
the location.[76]

Experimental studies have clearly shown the excellent 
synergy of mEHT with RT. The advantage of the application 
of oncothermia is significant.[86] Interestingly, comparison 
with water‑bath isothermal heating shows an optimum ratio 
at an average medium temperature of 42°C [Figure 3].
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The same study[87] showed significant improvement of 
the apoptotic ratio by mEHT in combination with RT 
compared with the water‑bath combined with RT. There 
was also a large increase in autophagy with the mEHT 
combinations [Figure  4]. The fingerprint of the extrinsic 
apoptotic pathway, caspase‑8, was significantly higher 
in the RT  +  mEHT combination, as has been shown 
previously.[79,87] Cell cycle arrest of malignant cells has 
also been clearly demonstrated.[88] Another radiation 
study was performed in  vivo[89] and showed significantly 
less hypoxia in FSall tumors 3  days after treatment 
with 15  Gy combined with mEHT at 41°C for 30  min. 
A  significant decrease in vascular endothelial growth 
factor has also been shown when mEHT is applied alone 
or in combination with RT.

Clinical studies of mEHT are consistent with the 
experimental data. Enhancement of oxygen in the target 
for sensitizing RT has been shown in a blood flow 
trial,[90] and increased permeability of blood vessels 
has been shown by a pharmacokinetic trial.[91] Sensitive 
organs, such as the brain, can also be treated safely, as 
shown by a dose escalation study.[92]

This method has been applied successfully in various cancer 
types, mostly complimentary with various chemotherapies. 
Remarkable results were achieved with gliomas,[93‑96] 
colorectal cancers,[97,98] lung cancers,[99,100] uterine cervix 
carcinomas,[101] malignant ascites,[102] sarcomas,[103,104] 
pancreas carcinomas,[105,106] and prostate cancer.[107,108]

A successful case of definitive RT with concurrent 
mEHT for stage IIIB NSCLC[109] projects the feasibility 
of mEHT combined with RT. Another case, the 
treatment of advanced cervical cancer with complex 
trimodal (mEHT  +  CT  +  RT), supports the possibility 
of combined therapy.[110] A large number of case reports 
were published with complementary RT  +  mEHT, 
which may be followed in the open‑access Oncothermia 
Journal.[111]

Two examples of representative case reports for 
mEHT  +  RT combined with CT  (mEHT  +  RT  +  CT) 
for inoperable advanced metastatic esophagus cancer are 
shown in Figures 5 and 6.[112]

Together with the extended number of studies in a 
combination of mEHT with CT, only some pilot studies 
were performed with a combination of RT. Some 
exciting results have been shown in pilot studies. In a 
small study [Figure 7],[113] the superiority of RT + mEHT 
was observed, but the small number of patients does not 
allow for conclusive results.

Quality of life  (QoL) of the patient is the integrative 
goal of mEHT combined with elongation of overall 
survival. Bone metastases frequently reduce QoL by 
intense pain. The mEHT method is helpful in these 
cases as well [Figure 8].[113]

Preoperative application of mEHT for liver metastases 
was performed by Prof. H. Renner[114]  [Klinikum 
Nord, Nürnberg, Germany; Figure  9]. The 
primary tumors were inoperable  (R2) rectal 
carcinomas  (n = 7). Trimodal therapy was applied: RT, 
45  +  5  Gy  (fractional); CT, 5‑FU/Mitomicine‑C  (×2); 
oncothermia, 60  min, diameter 30  cm  (8–×10). 
Following oncothermia, all patients were eligible for 
operation. The results of the operations were excellent: 
71% of patients exhibited complete resection  (R0) 
while one was partially resected  (R1) and one was not 
successfully operated (remained R2).

The successful application of mEHT in combination 
with CT[101] has demonstrated the feasibility of mEHT 
in uterus cervix carcinomas. A  phase III randomized 
clinical trial using trimodal (mEHT + CT + RT) therapy 
is currently ongoing[115‑117] for this localization. Interim 
results of 160  patients after the PET control before and 
after therapy shows promising results after 6  months of 
local disease control  [Figure  10]. The trimodal protocol 
was as follows: radiation, 25  ×  2  Gy external and 
3  ×  8  Gy brachytherapy; CT, 3  ×  80  mg/m2 cisplatin, 
and mEHT 2 × 55 min/week (4 weeks).

Both therapies, RT and mEHT, are local treatments 
that target the tumor. Circulating tumor cells  (CTCs) 
are present even in early stages of cancer, which can 

Figure 4: (a) Apoptosis and (b) autophagy induced by HT and mEHT 
in combination with RT for SCCVII (SCC7), a mouse head and neck 
carcinoma cell in vitro. Apoptosis is expressed as a percentage, while 
autophagy is expressed as folding rate

b

a
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form micro‑  and macro‑metastases by extravasation 
in sensitive organs, reducing the possibility of 
patient survival. Intercellular signal transduction and 
molecular transport between cells allow RT to act 
on neighboring cells, resulting in a bystander effect. 
Systemic effect of local RT was first observed by 
R.H. Mole, who named it the “abscopal effect.”[118] 
Bystander mechanisms using other messengers extends 
its effective influence and could be abscopal,[119,120] 
active on distant metastases or on CTCs.[121] 
Discovering its controversies[122] and hunting for 
bystander and abscopal effects is a hot topic in cancer 
therapies.[123,124] The abscopal effect was first observed 
in hyperthermia applications 40  years after it was 
demonstrated in RT.[125]

Although mEHT is a local treatment, it could also act 
systemically via the abscopal effect, which was shown 
in  vivo,[126‑128] and a possible mechanism is discussed 
below. This vaccination‑like mechanism, which has been 
proven in experimental studies, has been observed in 
human case reports.[129‑132] The abscopal effect induced 
by mEHT is a new strategy.

The abscopal effect observed in a patient with 
multiple metastatic stage IIIB NSCLC is an excellent 
example[133] [Figure  11]. Despite the advanced stage, 
the patient refused CT and requested other possible 
treatment options. RT in combination with mEHT and 
additional immune‑stimulating granulocyte‑monocyte 
colony stimulation factor  (GM‑CSF) was performed 

Figure 5: Treatment of relapsed, inoperable esophagus cancer (a) before mEHT therapy, (b) after mEHT therapy, (c) trimodal protocol, (d) placement 
of electrodes

c

b

a

d
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to induce the abscopal effect. Local field RT directed 
at the lung mass was delivered at a dose of 1.7 
cGy in 28 daily fractions, 5–6  times per week. 
This was followed by oncothermia after radiation 
three times per week. After 2  weeks of treatment, 
GM‑CSF  (250 µg, Leukine®, USA) was administered 
subcutaneously daily for 10  days. A  complete abscopal 
effect was observed on distant metastases with partial 
response of the primary tumor.

The abscopal effect has also been investigated in an 
ongoing trimodal phase III clinical study.[134] One 
patient in the study had neck and thorax nodes, bone, 
and lung metastases on pretreatment scan. This patient 
was HIV negative, stage IIIB, and aged 34  years. 
Following complex trimodal therapy including 
two rounds of CT, a complete abscopal effect was 
measured without further evidence of disease. Overall, 

24.1% of the patients (13 of 54  patients) showed a 
complete abscopal effect; the therapy eliminated the 
active cancer in the cervix, and metastases in pelvic 
and extra‑pelvic areas disappeared, as observed by 
PET [Figure 12].

Discussion
Synergy of RT and mEHT is the common goal, 
to restore apoptosis in malignant cells as much as 
possible. The common root of these methods is energy 
absorption by micro/nano parts of the malignant 
cells selected by precise focusing and biophysical 
differences in RT and mEHT, respectively. DNA 
nano‑targeting in RT harmonizes well with the 
nano‑targeting of mEHT.[135] The premise of both 
treatments is similar. The expected effects of ionizing 
radiation, where the target is DNA, and energy, which 

Figure 6: Treatment of relapsed, inoperable esophagus cancer  (a) before mEHT therapy; (b) after mEHT therapy, (c) trimodal protocol, (d) placement 
of electrodes

dc

b

a
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heats up its environment is useless, and can result 
in adverse effects. RT is an exemplary method for 
selective targeting of chemical bonds to arrest the 
cell cycle in malignant cells and induce apoptosis 
instead of proliferation. The goal of mEHT is to 
selectively kill malignant cells in a natural way, by 
inducing apoptotic cell death.[136] The goals of mEHT 
and RT are not identical only in the local action, but 
expected to be nonlocal by the various mechanisms of 
bystander and abscopal effects, which extend the local 
therapy systemic and allowing for successful action 
against systemic malignancy.

RT and mEHT differ in the targets of energy‑absorption and 
the selection of treatable cells. The relatively easy focusing 
of high energetic ionizing radiation by the beam size and 
shielding windows differs from the biophysical targeting 
mechanism of mEHT, which could be automatic with 
a well‑chosen modulated RF current through the target. 
The major mechanisms of cell death induced by RT[137] 
include apoptosis, senescence, autophagy, and necrosis, 
which could be promoted by mEHT as well.[79,86,138,139] The 
well‑known DNA fragmentation‑driven process in RT is 
also common with mEHT.[140] A portion of the RT effect 
occurs via the extrinsic apoptotic pathway of death‑receptor 
ligands in the FADD complex, producing Caspase‑8/10 and 
culminating with apoptosis by cleaved Caspase‑3.[137] This 
mechanism is strongly activated by mEHT as well.[87]

To improve the apoptotic signal, mEHT repairs 
intercellular connections.[85] New connections also 
make the missing signal transmissions possible. The 

Figure  8: Bone metastasis treatment by 18–20  Gy, fractionally 
1.8–2 Gy/day, 5x/week, plus mEHT every second day

Figure  9: Results of the operations performed postoncothermia on 
previously inoperable patients

Figure 7: Advanced liver metastases of various types of primary tumors. Investigator: Prof. H. Aydin; Institute: Clinic and Institute of radio‑oncology, 
zentralkrankenhus reinkenheide, Bremerhaven, Germany; oncothermia: ×2/week; concomitant chemotherapy; vinorelbine (20 mg/m2/week); concomitant 
radiotherapy: 10 MV, 1.5–1.8 Gy fractional radiation × 5/week, overall dose; 21–24 GY. (a) Protocols and response rates; (b) Successful case before 
RT + mHET combined therapy; and (c) after therapy

cb

a
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Figure  10: Interim of Phase III trial of participants with FIGO 
stage IIB (initial distal parametrium involvement) to IIIB cervical cancer. 
(a) Response rates. (b) Overall survival rates 6 months after the trimodal 
combined theraby. (c) Overall survival by HIV infections

c

b

a

Figure 11: Metastatic non-small cell lung cancer; (cT2 cN2 Mx stage 
IIIB); (a) Before therapy. (b) After therapy. The distant metastases 
disappeared while the primary tumor showed a partial response

ba

Figure 12: (a) Observed local and abscopal effects by PET scan. (b) Participants with abscopal effect by HIV status. Applied protocol: radiation, 
25 × 2 Gy external and 3 × 8 Gy brachytherapy; chemotherapy: 3 × 80 mg/m2 cisplatin; mHET (oncothmia): 2 × 55 min/week (4 weeks) (n = 54)

ba

restored intercellular bonds of E‑cadherin[76] bridge 
cells, forming a β‑catenin complex and allowing for 
signal transduction. Intercellular connections do not only 
transmit signals; they can also block the invasion of 
cells by bonding malignant cells to their neighbors.

Targeting of lipid rafts is similar to nano‑particle 
heating, but no artificial nanoparticles are involved; all 
are naturally present on the membrane of malignant 
cells.[141] The active energy absorption on the rafts 
combined with the various selection mechanisms ensures 
that the lipid rafts are induced to trigger apoptosis.[142] 
The general principles of cellular distortion are similar 
in mEHT and RT. Both target a part of the malignant 
cell (rafts in mEHT and DNA in RT) to induce chemical 

reactions, which lead to apoptosis [Figure 13]. Naturally, 
both processes have additional effects  (e.g., mEHT acts 
on the membrane potential of mitochondria, while RT 
can induce membrane damage), but the major reactions 
are localized.

The conceptual difference in mEHT and RT is the 
temperature. The energy absorption produces heat 
and causes thermal effects. Certain thermal effects are 
conditional for mEHT. However, the thermal effect 
is not identical to the temperature increase. Thermal 
effects are often mixed with temperature development 
and sometimes equalize the thermal reactions with 
temperature changes. This is an incorrect approach, 
because thermal effects of phase changes of the 
materials or molecular excitations by absorbed heat 
energy are usually independent of the change in 
temperature. The temperature in these cases is a 
conditional factor, but its change is not necessary. An 
obvious example is boiling water, which absorbs a 
lot of heat  (thermal effect) until the water evaporates 
without changing temperature. The thermal effect 
is not equal to the temperature change; however, the 
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Figure 13: The principles of mEHT and RT are similar: a nano‑range 
excitation initiates apoptosis

Figure 14: (a) Extrinsic excitation of trail death receptor and other molecules in lipid rafts. (b) immunohistochemistry detection of TRAIL R2 in 
the treated sample (HT29 × enograft) following 8 h of mEHT treatment. (c) Membrane expression of TRAIL‑R2, FAS, and FADD following mEHT

c

ba

consequence of heat absorption usually changes the 
temperature. Distinguishing heat absorption from 
the temperature change is mandatory in the case of 
oncological hyperthermia when our task is to change 
the chemical reactions and the chemical bonds involved 
in the cellular signals to eliminate malignant cells 
from the system. The desired effects are the molecular 
changes where the temperature is only a condition, and 
its change is not requested.

The thermal effect is limited to nanoscopic local 
“points,” which are most sensitive to any lethal attack on 
malignant cells. For this, a broad spectrum of biophysical 
and technical achievements are used. The first is the 
well‑chosen radiofrequency current,[143] which constructs 
a thermal gradient between extra‑and intracellular 
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electrolytes. The RF carrier frequency was chosen 
according to the medical standards of 13.56 MHz with 
appropriate time‑fractal modulated current,[144] which is 
essential to have the proper effect (a technical description 
can be found elsewhere[145,146]). The temperature gradient 
is one of the driving forces of the signal propagation 
that starts at the outer membrane of the cell as extrinsic 
excitation. The excitation requires energy absorption 
and changes the molecular structure, and thus these are 
thermal, but not temperature dependent.[147,148] The action 
is like a first‑order phase transition with latent energy 
exchange at constant (transition) temperature.

The dose of the thermal effect is not the temperature. 
The temperature is not a dose!  (It does not change 
by the volume/mass.) This can lead to controversial 

results, as has been demonstrated with the clinical 
study described earlier.[10,46] This challenge requests 
a reference point.[148,149] This challenge could be 
solved by mEHT, which uses the well‑known gold 
standards, with an energy‑dose concept in the 
protocol. The energy is controlled to apply the largest 
tolerable energy‑dose  (J/kg).[147,150‑152] The efficacy is 
measured by the absorbed energy  (J/kg), and the safe 
limit is determined by energy transfer through the 
skin (J/m2). The control of this last point makes safe and 
complication‑free mEHT possible.

The new strategy of tumor treatment with local therapies 
is tightly connected to the abscopal mechanism,[153] 
which allows cellular distortion to extend to bystander 
cells and distant malignant lesions. One of the 

Figure 15: (a) Mechanism of immunogenic cell death induction (CRT calreticulin) (adapted from). (b) Immunohistochemistry registration of CRT, 
HMGB1, and HSP70 as factors of DAMP (HT29 × enograft experiment). (c) T‑cell characteristics by CDs following concomitant application of 
DC + mEHT

c

ba
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mechanisms is considerably investigated by mEHT and 
the starting point of the mechanism is likely apoptosis. 
mEHT induces an extrinsic signal for apoptosis 
[Figure  14][154,155] and produces damage‑associated 
molecular pattern  (DAMP)[156] and immunogenic cell 
death (ICD).[126]

This type of apoptosis induces ICD with DAMP 
[Figure 15] and is a novel type of “cancer vaccination”[157] 
that has been patented in the US[158] and EU[159] with the 
application of mEHT.

Conclusions
Oncological hyperthermia is recently at a crossroads, 
facing a challenge by immune oncology: how to target 
the sensitive bonds by energy‑absorption producing 
apoptosis and its immunological consequences. 
A  recognized specialist of hyperthermia formulated 
a long time ago[160]: “The mistakes made by the 
hyperthermia community may serve as lessons, not to be 
repeated by investigators in other novel fields of cancer 
treatment.”

mEHT offers a new paradigm with nanoscopic heating, 
providing an adequate answer to the present challenges. 
mEHT breaks the long‑term dominance of the isothermal 
heating approach. It uses nano‑heating technology 
to select and heat the membrane of malignant cells 
effectively. The heating is concentrated mostly on the 
cell membrane, thus nano‑range energy liberation can 
be precisely controlled without considerable wasted 
energy and without disadvantages that result from 
heating the tumor environment. The results and general 
benefits of mEHT open a new kind of local heating 
and destroy primary and metastatic tumor lesions by 
apoptosis‑inducing ICD by DAMP. The selective, 
nonequilibrium energy absorption is well synergized 
with modern RT, presenting an effective and controllable 
tumor‑specific immune reaction and in consequence 
abscopal effects. Due to the highly precise and effective 
energy delivery, the actual dose of mEHT is the same as 
the dose of RT: The Gy (J/kg).
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