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Abstract 
 
Homeostasis creates self-organized synchrony of the body’s reactions, and despite the energetically open 
system with intensive external and internal interactions, it is robustly stable. Importantly the self-organized 
system has scaling behaviors in its allometry, internal structures, and dynamic processes. The system works 
stochastically. Deterministic reductionism has validity only by the great average of the probabilistic processes. 
The system’s dynamics have a characteristic distribution of signals, which may be characterized by their 
frequency distribution, creating a particular “noise” 1/f of the power density. The stochastic processes produce 
resonances pumped by various noise spectra. The chemical processes are mostly driven by enzymatic 
processes, which also have noise-dependent resonant optimizing. The resonance frequencies are as many as 
many enzymatic reactions exist in the target. 
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1. Introduction 

All parts of the biosystems are energetically open. The micro and macro environment have a decisional 
influence on their processes. The system exchanges energy and information with its environment. According to 
a well-defined balance, the processes are dynamic and interconnected with each other, the homeostasis [1]. This 
dynamic stability is self-organized [2], and despite the intensive interactions, it is robustly stable at large order 
of magnitudes [3]. The dynamic stability is regulated and controlled by the homeostatic feedback mechanisms 
[4], keeping the balance between promoters and suppressors in the complete system [5]. The living network is 
undoubtedly not a simple addition of its parts [6]. It forms a complex structure [7]. Theoretical biology faces a 
severe challenge of complexity [8]. 

Regardless of its living of lifeless state build forms, the natural structures are far from the possibility to 
describe them in the frame of Euclidean geometry with straight lines and circles. The natural structures are 
self-organized and mostly form fractal structures [9]. The fractal geometry in life makes it possible to 
categorize the living species by their allometric comparison [10] comparison of complex morphogenetic 
differences [11]. This type of universality of the complex feedback mechanisms controls the dynamic equilibrium 
maintaining the homeostasis [12]. Fractal models represent an excellent approach to explaining the living 
processes’ structural development [13], even for the genetic code structure [14]. 

The genetic code construction uses Kronecker products (KP) of matrixes with binary numbers. The construction 
of KP sequences the same template and so represents fractals too [15] [16]. The generated nucleotide 
sequences characteristic of various living systems form a fractal pattern. An extension of KP construction 
introduces blocks and a multifractal approach [17], which fits the living complexity [18]. 

The fractal description is suitable for extending the dynamic physiological processes and analyzing the fractal 
properties in time [19]. The time-fractal studies are based on the research of the structure of various signals 
[20] [21]. The dynamism of the energetically open living systems dominantly involves self-organizing processes 
allowing their fractal description [22]. The time fractals reflect the complex space-time approach developed a 
new discipline, fractal physiology [23] [24], expressing the collectivity of the processes [25]. 

The modulation of the external bioelectromagnetic signals has well-explained principles. The carrier frequency 
helps in the selection mechanisms, while its modulation supports homeostasis by its time fractal (1/f) 
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frequency distribution [26]. The modulation could have multiple effects locally and systematically. The local 
force for the homeostatic control acts as a further selection factor regarding the lost control of the tumorous 
cells. Furthermore, the modulation forces the healthy dynamical order providing a compulsory process for 
apoptosis of the out-of-control cells. HRV may characterize the homeostasis [27], presenting the complexity of 
the system. 

The well applied time-fractal current flow may activate the structural fractals in the living systems, and the 
personal fractal structure could modify the time-fractal pattern, too [28]. The fundamentally nonlinear 
physiological system dynamics work on the edge of chaos, a border of order and disorder showing a constant 
dynamic interplay between these states [29]. The challenge of the homeostatic equilibrium is the apparent 
chaos. The chaos looks complete randomness only. However, the chaos in biosystems results from the 
stochastic self-organizing and the energetically open system, which directly and permanently interacts with the 
environment. Its structural and temporal structure is fractal, which appears in the fundamental arrangements 
of the self-similar building and dynamism of the energy exchanges internally and externally. The living 
processes are complex. They are in self-organized criticality (SOC) [30], which is formulated, as the “life at the 
edge of chaos” [31]. This chaos is the realization of a well-organized stochastic (probabilistic) system [32]. The 
chaos is only an ostensible complete disorder [33]. 

2. Methods 

2.1. Fluctuations 

An organism has a finite number of possible states. These states could be characterized in terms of operational 
quality utilizing a diagnostic parameter (signals). All signals have an average in time, and the signals fluctuate 
around this value in a controlled band. The random fluctuation sets various states (microstates) of the body, 
which exist only briefly and appear as fluctuation. The temporal fluctuation is regarded as a noise of the signal. 
The noise of living processes usually does not fluctuate randomly. The homeostatic control of the body 
regulates them. The minimal number of diagnostic signals is defined by the quasi-independent, weakly 
overlapping regulation intervals. The number of these quasi-independent diagnostic signals does not change 
during the system meets the conditions of the healthy dynamical equilibrium, the homeostasis. The average 
values, the fluctuation band, and the distribution of the frequencies may vary, depending on age and adaptation 
to changing environmental conditions. These quantities are called macroscopic diagnostic determinants and the 
status vector with iD  diagnostic states: 

( ) ( ), 1, 2, ,i iD D i n= =X Y                                     (1) 

where X  and Y  are the signals of the system and outside environment, respectively. Due to the short time 
realized microstates, the number of diagnostic states is significantly less than the numberof its determinant 
signals iD , consequently, the microstates appear as statistical statements. The same homeostatic macrostate 
has a wide variety of microstates that change rapidly over time, fluctuating around the averages. The probability 
that the microstate falls in the interval ( ), d+X X X  at time t, i.e., the probability density ( ),w tX with: 

( ) ( )d , dP w t X  + =X X X X X                                       (2) 

Consequently iD  is given by ( ),w tX  it is a stochastic determinant which primarily we characterize with its 

average (mean value) 

                                                           
( )

( ) ( ) ( ), , d 1,2, ,i iX
D D w X t X i n= = X Y                               (3) 

and its variance 
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( ) ( )
2

1,2, ,
iD i iD D i n = − =                                    (4) 

where  denotes the average of the values. The failure of the dynamic equilibrium when i iD D−  is larger 

than a predetermined threshold with a limiting value ( 
iDl ). According to the Chebyshev theorem [34] the 

probability that 
ii i DD D l−   (so the system is out from the healthy homeostasis) is: 

( )
( )

22

2 2

i

i

i i

D i i

fail i i D

D D

D D
P D D l

l l

 −
−   =                                        (5) 

In a healthy state the failP  is small. The iD average characterizes this state. The conventional diagnostics 

controls iD  values only, regarding the patient healthy when the fluctuations 
iD i if D D= −  remain within a 

tolerance band 
iDl . However, the fluctuation carries essential information about the microstates. Changes in 

the regulative processes could drastically modify the fluctuation of the signal without changing its average 
value. Study the noise spectrum may predict modifications of the regulative feedbacks, so it has diagnostic 
value. 

The living, dynamic equilibrium is well-regulated but in a probabilistic way. The time-dependent processes 
realize the observed signal with a probability, as the actual exposition from the possibilities of the fluctuations 
of the measured signal. 

The vital principle is the feedback mechanism, which controls the balance within a predetermined range around 
the reference value. It is usually well modeled with fuzzy logic, an approach to counting “degrees of truth” 
rather than the usual “true or false” decisions [35]. This logic governs homeostatic equilibria in all ranges of 
space and time in living systems. This uncertain value is undoubtedly in a controlled reference interval, were 
strongly interconnected negative feedback loops regulate the balance in the micro and macro ranges, forming 
the system’s dynamic stability. 

These phenomena request a stochastic approach (probability of events dependent on time) instead of 
conventional thinking based on deterministic changes [36]. Deterministic reductionism can mislead the 
research. The homeostasis is often ignored and used as a static framework for effects [37]. The stochastic 
approach is fundamental in biological dynamism [38]. The dynamic homeostatic equilibrium keeps the system 
in a stable but constantly changing state. 

2.2. Stochastic and Deterministic Approach 

A model calculation of tumor growth shows the strength of the stochastic approach. In a simple example, the 
growth of a tumor can be described deterministically. The deterministic change of tumor mass ( tM ) by 
observation time ( t ) is proportional with its actual mass ( tM  ): 

                                                                                                ( ) ( )t tM t kM t t =                                                                                  (6) 

where k is a constant. A well-known exponential solution uses the mass of the tumor at the start of its 
observation ( 0M  ): 

 
( )

( ) ( ) 0

d
e

d

t kt

t t

M t
kM t M t M

t
=  =                                                             (7) 
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In a deterministic way, the prognostic task of oncology would be simple regarding exponential growth. However, 
the process is stochastic, requesting the step-by-step analysis of the development of the tumor. We follow the 
additional or disappearing individual cells producing the mass growth. The probability 

tMP  to add a cell to the 

tumor at t time during Δt interval is proportional with ( )tkM t t , as we assumed initially been in (6). Then the 

probability equation with the added and eliminated cells in time interval Δt is: 

( ) ( ) ( ) ( ) ( )11
t t t tM M t M t MP t t P t k M tP t kM tP t−+  = + −  −                                (8) 

It depends on the added cells to the tumor from the previous time interval ( ( )
tMP t t+  ) and the eliminated cells 

in the actual time ( ( )
tt MkM tP t−  ) considering the process in one step before ( ( ) ( )11

tt Mk M tP t−−  ). In a 

differential equation form: 

( )
( ) ( )1

d
1

d

t

t t

M

t M t M

P t
k M P t kM P

t
−= − −                                 (9) 

When we start from a single cell ( ( )0 1
tMP = if 0 1M = , ( )0 0

tMP =  in every other case), the solution of (9) 

at 0tM M cases: 

( ) ( ) 0
0

0

1
e 1 e

t

t

M Mt kM t kt

M

t

M
P t

M M

−
− −

− 
= − 

− 
                                                         (10) 

Compare (7) and (10) how they are different! The deterministic approach (7) is continuous in time, running in real 
values, while the stochastic, probability-based approach (10) jumps on integers, building up the tumor-mass 
step by step. The deterministic equation gives a fixed result, while the stochastic shows “only” probability. It is 
interesting to see that the deterministic result is the particular case of the stochastic one, the 

deterministic ( ) ( )
tM tP t M t= condition does not depend of the actual number of steps. Consequently, the 

averaging of the stochastic probability results provide the deterministic solution: 

( ) ( ) ( )
0

0et t

t

kt

M t t M
M M

P t M t M P t M


=

= = =                                     (11) 

2.3. The Fluctuation Phenomena 

The signals follow the living, dynamic interactions, the molecular changes, and the chemical and physical 
excitations give a structured noise. The power spectral density of a signal ( ( )S f  ), is the power of the noise 

(fluctuation) per unit of bandwidth. Define the work of the ( )x t stochastic process: 

( )2: dW x t t


−
=                                                                  (12) 

The (12) with the Parseval’s formula may be evaluated 

( ) ( )2 d dW x t t S f f






− −
= =                                                 (13) 

 

where ( )S f is the spectral power density in any random stationary case. The Fourier transform of ( )x t

stochastic process is the primary step to study the phenomena [39], 
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( ) ( ) ( ) 21
e d :

2

j ftX f x t t F x t− 

−



= =

                                    (14) 

where the spectral density function ( )S f  is: 

( )
( )

2

2

X f
S f =


                                                           (15) 

The even function of the frequency, i.e., ( ) ( )S f S f= − . 

The ( )S f gives the intensity of noise as a function of spatial frequency, measured in 
W

J
Hz

= , characterizing the 

stochastic signal with the f  frequency. 

The most straightforward complex noise follows normal (Gaussian) distribution (the amplitudes have normal 
distribution), and its power function ( )S f  is self-similar through many orders of magnitudes. In this simple 

case, the ( )S f  : 

( )
A

S f
f 

=                                                                  (16) 

The   exponent in (16) formally refers to optics, noted as the “color” of the noise. The white-noise is flat ( 0 =

), the pink-noise has 1 = , and other colors are described by various other numbers up to 2 = , the brown-
noise. So, the ( )S f of pink-noise inversely depends on f frequency, noted as 1/f noise. The 1/f  noise carries the 

self-similar structure of living processes having a time-fractal covering the life’s dynamism [40] [41]. The 
dynamical fractal structure of living systems marks the self-organizing both in geometric and time structures 
and dynamically regulates the living matter [42], defines time-fractal structure in stochastic way of the living 
systems [43], a 1/f fluctuation. The physiological control shows 1/f  spectrum [44]. One of the most studied 
such spectra is the heart rate variability (HRV). 

This 1/f  noise has a particular behaviour. Each octave interval (halving or doubling in frequency) carries an 
equal amount of noise energy. The living system makes special signal processing due to its self-organized 
symmetry, so it transforms the white noise to pink [45], forming the most common signal in biological systems 
[46]. 

Stochastic signals additionally to ( )S f are usually characterized by their autocorrelation function ( )1 2,XXR t t . 

The autocorrelation measures how the signal correlates with a delayed copy of itself in the function of time-
lag ( )2 1t t = − , measuring the signal in 1t  and subsequent 2t  in X position. The autocorrelation evaluation is a 

mathematical tool for finding repeating patterns, looking for periodicity in the signal. It allows identifying the 
existence of the biological chain processes. The ( )S f and ( )1 2,XXR t t functions are not independent, they could 

be converted to each other by Fourier transformation. Measuring the power density ( )S f of a signal is easier 

than its autocorrelation, so usually the studies concentrate on the power density function.   
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3. Results 

3.1. White Noise 

All frequencies in the entire interval have the same A amplitude in the white noise spectrum: 

( )
1

S f A
f 

=                                                                          (17) 

i.e., from (16), 0 = . Consequently, the autocorrelation function is completely uncorrelated: 

( ) ( ) ( ) ( ) ( )

( ) ( )

0

0

1
cos 2 d cos 2 d

2

2cos 2 d
2 2

XXR S f f f S f f f

A A
f f

  

  

 



−
=   = 



=  =

 



                                     (18) 

                

The band constraint in a limited interval, up to maxf  upper-frequency limit affects a longer-term correlation: 

( ) ( ) ( ) ( ) ( )

( )
( )

0 max

0

max

0

max

0
max

1
cos 2 d cos 2 d

2

sin 2
2cos 2 d

2 2

f

XX

f

R S f f f S f f f

fA
f f A

f




  






−
=   = 




=  =



 



                                  (19) 

For example, the completely flat ( )S f  limited to the frequency-band [−10 - 10] has well-defined 

autocorrelation Figure 1: 

The correlation function oscillates, so the correlation length does not monotonically decrease in band-limited 
white noise. 

3.2. The 1/f Noise 

A stationary random process has an indefinite duration. To introduce a modified density spectrum, consider a 
finite segment of the random process ( )x t  of duration 2T, defined by: 

 
 
 
 
 
 
Figure 1. The correlation function ( )XX

R  of band-limited white noise 
than the ( ) 0 cosS f f t= = . 
 
 
 
 
 
 
 

 

( )
( ) ( )

,
and lim

0, otherwise
T T

T

x t T t T
x x t x t

→

 −  
= =


                                      (20) 

https://www.scirp.org/journal/paperinformation.aspx?paperid=113847#f1


 
166 Oncothermia Journal Volume 31, March 2022 
 
 

According to (14), the Fourier transform of ( )Tx t has the form of 

( ) ( ) 21
, e d

2

T j ft

TT
X f T x t t− 

−
=


                                             (21) 

The Fourier transform of the function ( )x a t , where a is an arbitrary complex number, and f is the frequency: 

( ) 
1 f

F x a t X
a a

 
 =  

 
                        (22) 

 

Use (21) and (22) we get: 

( ) 
1

,T

f
F x at X T

a a

 
=  

 
                                   (23) 

Using Parseval’s formula and (15): 

   ( ) ( ) ( )
( )

2

2
,1 1

lim d
2

d lim
2 2

T

T T
T

X f T
x t t S f f S f

T T



→ →
− −

 
 

= = 
  


                     (24) 

The living processes are basically self-similar, so it is convenient to define the self-similarity of a stochastic 
process. A stochastic process is said to be self-similar if the effective power of the stochastic process 
representation ( )x t  equals the effective power of the representation ( )x at defined over time scale [at], for 

every a positive scalar, i.e.: 

( ) ( ) ( )2 21 1
lim d lim d

2 2

T T

T T
T T

x t t x at at
T T→ →

− −

=                           (25) 

And so from (22) and (20), we get 

( )
2

1
d d

f
a S f S f f

aa



− −

 
= 

 
                                 (26) 

Also, for the power spectral density function, the functional equation may be expressed: 

               ( )
f

S aS f
a

 
= 

 
                                    (27) 

for every positive scalar a and every scalar f. To solve this equation, we assume that 0f  and set for a the 
value a f= : 

( )
( )1S

S f
f

=                                        (28) 

 

On the other hand, if 0f   then f f= − , and 
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           ( )
1 1 ff

S S S f
a a a a

  
= − =  

   
                                               (29) 

Let us set for a the value a f= and take into account that the power density function is even, so we obtain the 

1/f  spectrum, or “pink-noise”: 

                ( )
( )1S

S f
f

=                                         (30) 

The autocorrelation function of ( )
1

1
S f

f
  pink noise with Fourier transformation has a singular result: 

( ) ( ) ( )

( )

( )
( )

0

0

1
cos 2 d

2

1
cos 2 d

cos 2
d 2

2

XXR S f f f

f f
f

f
f

f

 








−








=  



= 


= 









                                            (31) 

follows the ( )Ci x function: 

( )
( )cos 2 cos

d
2x

f x
Ci x x

f x





  
= −


                              (32) 

Due to ( ) 0Ci  = , the autocorrelation of 1/f noise in long time-lag is zero Figure 2. 

By the ergodic hypothesis [47], the autocorrelation function of a stationary random process ( )x t can be defined 

as 

( ) ( ) ( ) ( ) ( ) 
1

lim d
2

xx xx xxT

T

T
R x t x t t R R

T
   

−→
= + = −               (33) 

where   is the time-lag. The relation between autocorrelation function and the power density spectrum can be 
expressed by the Fourier transform of the autocorrelation function (Wiener-Khinchine theorem), namely: 

( ) ( )

( ) ( )

2

2

1
e d

2

1
e d

2

j f

xx xx

j f

xx xx

R f R

R R f f





 



 − 

−



−



=


=






                                (34) 
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Figure 2. Autocorrelation function of 1/f  noise (negative 
integral cosine function, ( )Ci x− ). 

 
 
 
 
 
 
 

 
 
 
 
 
From these (considering [36] and [48] ), we may conclude 

( ) ( )
( ) ( )2 2
1 2 1

e d e dj f j f

xx

S S
R S f f f

f

 


  

− −


= = =                                       (35) 

Assuming the lower cutoff frequency minf , the function of such an approximate 1/f  noise correlation from(31) 

( ) ( )
( )

( ) ( )
min min

min

cos 21
cos 2 d d 2 2

2f f

f
f f f Ci f

f f


    



  
=  =  = − 


             (36) 

The procedure is also shown in Figure 2. 

It can be seen from the figure that here too, there is a problem with the introduction of the correlation length 
since the correlation function oscillates. 

In the case where the lower cutoff frequency is minimal, the argument of the Ci--function is small even at 
significant offset times. Then the correlation function is as shown in Figure 3. 

It appears that this case can be approximated by the sum of white noise and a virtually constant correlation 
function. More precisely, the can be asymptotically approximated by 

  ( ) ( )( )0ln 2 f   = − +                                     (37) 

with a function where 5772  is the Euler-Mascheroni constant. 

The autocorrelation function of 1 f   ( 0  and 1  ): 

( ) ( )
( )

10

1 1
cos 2 d

2 sin 1
2

XXR f f
f  

 



−

 
=  =

 
 − 

 

                   (38) 

Note that colored noises do not fit the white and pink noises, so the basic noises have no common expression. 
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The pink noise cannot be described with the classical apparatus of non-equilibrium thermodynamics. 
Macroscopic fluctuation characterizes the thermodynamic processes. The range of space in which the 
fluctuation occurs is not uniform concerning the fluctuating quantity (s) but is thermodynamically in equilibrium 
at all points. The latter means that the exchange of extensive amounts characteristic of fluctuation between 
spatial domains during the relaxation period of equilibrium is negligible. A further feature of thermodynamic 
fluctuations is that the fluctuation persists for a finite time and that the rate of change of 
each ai(i=1,2,⋯,n)ai(i=1,2,⋯,n) extensive can be expressed in terms of the extensive amounts involved in the 
fluctuation, i.e. 

 

 

Figure 3. Autocorrelation function 1/f noise for very low cutoff 
frequency (negative, integral cosine function, ( )Ci x− ). 
 
 
 
 

( ) ( )1 2

d
, , , 1,2, ,

d

i
n

a
f a a a i n

t
= =                                (39) 

Let be an extensive one whose relaxation time is much longer than the others. Then the fluctuation can be 
described by this single extensive one. When (39) is linear and returns to the equilibrium position of the system, 
then the equation is a one-sided fluctuation process, completely deterministic, with no noise in it: 

                     
d

d

a
a

t
= −                                         (40) 

Solving (41): 

    ( ) ( )0 e ta t a −=                                       (41) 

Then the correlation function is: 

        ( ) ( ) ( ) ( )
2

0 0 eaaR a a a
 

 
−

= =                                           (42) 

and its power spectrum: 

( ) ( ) ( )
2

2 2
e d 0i

aaS i R a 
  

 

−

−



= =   
+

                                 (43) 

For stochasticity, the necessary noise appears in the fluctuation and spectrum for the whole, but the 
considerations lead to (43) are deterministic. Therefore, it is assumed that this deterministic signal is repeated 
randomly, forming a noise of a series of randomly repeated deterministic signals. Introducing a white noise 
function into the deterministic equation (like is in the Langevin equation) applies the amplitudes of the white 
noise spectrum that corresponds to the noise spectrum given by the deterministic random fluctuation and 

accordingly with the correlation function too. This is white noise ( 1


) for small   values, while Brown noise (

2

1


) for large values. 



 
170 Oncothermia Journal Volume 31, March 2022 
 
 

In the case of pink-noise, these considerations do not work. The Fourier transform connects the ( )S f power 

function and the xxR  autocirreklation function: 

( ) ( ) ( )
1

aa aa

i
S i R S R b

b b


  

 
   

 
                          (44) 

Because 

( )
1

S i


=                                         (45) 

because of this 

1 1i
S

b b





 
= 

 
                                      (46) 

so it follows that 

( ) ( )aa aaR R b =                                         (47) 

The correlation function is constant in this case, so the pink noise correlated in the same way for each shift, so 
there can be no thermodynamic fluctuation! 

Starting with such randomized deterministic fluctuations, we get equivalents to form of (40), like: 

  
d 1

d

a
a a

t



= − = −                                 (48) 

In this case, instead of (41), we get the following spectrum: 

( ) ( ) ( )
( )

2

2
e d 0

1

i

aaS i f a 
  



−

−



= =   
+

                           (49) 

Assuming that the temporal correlation length probability density function is lognormal, the resulting noise 

spectrum is: 1 f  . It is the same as the originally white-noise pumped stochastic case. It is confusing, of course, 
that this process started from deterministic distribution, but it was overcome by assuming that there is a 
random series of such deterministic fluctuations. 

Two stochastic processes can be considered equivalent if their noise spectrum is the same. Based on this, we 
introduce a stochastic excitation term ( )q t  to (48): 

                ( )
d 1

d

a
a q t

t 
= − +                                     (50) 

The ( )q t spectrum is chosen of the signal resulting from the solution of the equation is equal to the power 

spectrum of the fluctuation (49). This can always be done. To prove this, Fourier transforms Equation (50), then 
we get that  

( ) ( )
( )

( )
1

1
i a q a q

i


   

 

 
+ = → = 

+ 
                           (51) 
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Hence the power spectrum 

               ( )
( )

( )
2

2

2
1

S q


 


=
+

                                   (52) 

The following choice leads to the desired result: 

                      ( )
( )0a

q 


=                                      (53) 

Consequently, if ( )q t is a white noise with  
( )0a


 amplitude, then the noise spectrum of the signal is the same 

as the noise spectrum of the fluctuation. 

3.3. Orstein-Uhlenbeck Process 

The power spectrum of a random series of such deterministic fluctuations differs from the white-noise pumped 
Langevin solution only in a proportionality factor. We approach the fluctuation by decomposing it into the sum 
of quasi-periodic stochastic processes of different statistically independent time scales. The quasi-periodic 
stochastic processes with different time scales also have different frequency scales. All such component 
processes are assumed to be statistically similar. Note the increase of a stochastic ( )X t  

process ( ) ( )dX t t X t+ −  without memory with Θ-function: 

( ) ( ) ( )d , ,dX t t X t X t t t+ − =    .                              (54) 

Assume that ( ) , ,dX t t t   is a smooth function of the , , dX t t  variables and that ( )X t is continuous: 

                 ( ) ( )
d 0
lim d
t

X t t X t
→

+ = .                                      (55) 

The approach that the observed noise by the emission of subsequent process-chains in statistical mechanics, 
the Markov process [49] describes the chain reaction, which is used in biology too [50]. The Markovian recursive 
successive building the ( )dX t t+ , while the function ( )X t from where it was derived depends only from t in 

memory-less construction, using: 

( ) ( )

( ) ( )

1

1

d d
, ,d 1

d d d
1 , 1 ,

n

i

n

i

t t
X t t t X t i X t i

n n

t t t
X t i t i

n n n

=

=

   
 = + − + −      

   

  
=  + − + −  

  





              (56) 

 

Since dt can be chosen to be arbitrarily small, the ( )1

d
1i

t
t t i

n
− = + − can be placed in any proximity of the t times 

by choosing n large enough. Exploiting the continuity, in this case: 

   

( ) ( )

( ) ( )

1 1

1

,

d
, ,d , ,

i i

n

ii

t t X t X t

t
X t t t X t t

n

− −

=

→ =

 
 =     

 


                                (57) 
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Here, the ( )
d

, ,i

t
X t t

n

 
  

 
terms can be considered as representations of the ( )

d
, ,

t
X t t

n

 
  
 

variable that is 

statistically independent due to being the memory free of the process. Since n is arbitrarily large, it follows from 

the central limit theorem that ( ) , ,dX t t t    is the sum of n statistically independent ( )
d

, ,i

t
X t t

n

 
  

 
probability 

variables. Hence, this probability variable distributes normally. The following properties follow from the 
property of normally distributed random variables: 

( ) ( )

( ) ( )

d
, ,d , ,

d
, ,d , ,

t
X t t t n X t t

n

t
X t t t n X t t

n

 
 =      

 

 
 =      

 

                           (58) 

Where  notes the mean, and  is the standard deviation. Solving function equations 

( ) ( )

( ) ( )

, , d , d

, ,d , d

X t t t A X t t t

X t t t D X t t t

 =      

 =      

                              (59) 

where A and D are smooth functions of X  and t, and 0D  . Considering the normality of (55) and (60): 

( ) ( ) ( )

( ) ( )

( ) ( )
1 1

2 2

d , ,d

, d , , d

, d 0,1 d

X t t X t X t t t

A X t t D X t t

A X t t D t

+ − =   

=   

= +

N

N

                          (60) 

where ( )0,1N  is the unit standard deviation squared normal distribution stochastic process with zero means. 

Turning to a differential equation, we get the following nonlinear generalized Langevin equation 

                ( ) ( ) ( )
1

2
d

, ,
d

X
A X t D X t t

t
= +                                            (61) 

driven by normally distributed white noise: 

                           ( ) ( )1

d 0
lim 0,d
t

t t−
→

 = N                                    (62) 

In the Gillespie sense [51], the stochastic process is self-similar, resolved to a sum of statistically independent 
terms normally distributed within the studied interval. Consider the simplest of the self-similar stochastic 
processes in (61): 

              ( )
1

2
d 1

d

X
X D t

t 
= − +                                      (63) 

where   is the time constant of the process. 

The describes an Ornstein-Uhlenbeck process (OUP), which is stochastic and follows a normal (Gaussian) 
distribution. The OUP is homogeneous in time. Its homogeneity in time allows the OUP to describe it simply with 
the stochastic interaction of an energy source and the connected energy-consuming system Figure 4, allowing 
linear transformations of space and time variables [52]. 
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The central value is exponentially decreasing, and a white noise drives it. The exponential decay should be 
uniformly distributed rather than lognormal, the maximum entropy belongs to1/f, and then the equation and 
distribution of the distribution should lead to 1/f. 

If we use a lognormal distribution in the interval [53], modifying (63) by 0D
D


=  [54]: 

 

Figure 4. The simplest relation of the energy 
source (reservoir, mechanical, electronic, etc.) 
and the linear consumer (energy-sink 
mechanical electronic, etc.) 

               ( )

1

2
0d 1

d

DX
X t

t  
= − +                       

             (64) 

 

Thus, the power spectrum of this is distributed by the lognormal of the time domain, asymptotically 1  . The 
equation describes the noise of a system excited by white noise consisting of an energy store (e.g., mass, 
rotating mass, capacitor, inductance) and a linear attenuation (e.g., fluid resistance, ohmic resistance).The power 
spectrum of the process: 

                  ( )
( )

2

0

2
,

1

s

s

D
S


 


=

+
                                    (65) 

Here s  is the time constant of the system, which can also be considered the natural time scale of the stochastic 
process. Let’s define 

                                 
1

s




=                                            (66) 

a frequency scale at which we want to characterize stochastic processes. Let ( )dG   a be the number of 

stochastic processes in the frequency interval ( ), d  + , then the energy spectrum of the stochastic 

processes in the interval between the frequency scales ( )2 1,  : 

                     ( )
( )2

1
1 2 2 2

, , d
D G

S





   

 


=

+
                                  (67) 

If the distribution is uniform, that is, if, 

      ( )
2 1

d
dG


 

 
=

−
                                    (68) 

then we get that 
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( )
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1 2
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, , d 2
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D

D
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S f

D





  

   
     

 

  






 

= = −
+ 




                   (69) 

a well-known result gives white noise in the first interval, pink in the second, and brown (Wiener noise) in the 
third. 

When the relaxation rate is uniform in an interval  1 2,f f  and the applied amplitude doesn’t change. Hence the 

spectrum of OUP, ( )
1

S f
f 

= has three well distinguishable frequency parts Figure 5. 

3.4. Importance of the Self-Similarity 

The s  the time constant of the system in (65) generates the stochastic signal. The s  can be considered as the 
natural time scale of the stochastic process that characterizes the two-point correlation function of the 
stochastic process. Indeed, the two-point correlation function from (65) shows the degree of correlation 
decreases exponentially with  time constant: 

( ) ( )
( )

1 1 0
02

, e
1

ss
XX s

s

D
F S F D




   



−
− −

 
  = = = 
 + 

                    (70) 

This feature of τsτs is the temporal correlation length. 

The complexity of the system involves a ( )ds sG   number of statistically independent stochastic processes in 

the temporal correlation length interval ( ), ds s s  + , then the resulting energy spectrum of the stochastic 

processes in the ( )0, interval is: 

( )
( )

( )

0

20
d

1

s s

s

s

D G
S

 
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 



=
+

                                     (71) 

when the distribution is scale variant, i.e.: 

               ( )
d

d s
s s

s

G


 


=                                        (72) 

form, then using Equation (70) a 
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Figure 5. The power density function is divided into 
three distinguishable parts in Ornstein-Uhlenbeck 
process. The  1 2

,f f  interval, when the probability of 

realization of the f frequencies are equal. 

 

 

             
( )

20

1 1
d

21
s

s


 

 
=

+
                                                         (73) 

improper integrated, we get the desired result: 
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0 0
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The scale invariance means that the probability scale is independent, 

( ) ( )
d d

d d s s
s s s s

s s

G G
 

   
 

=  =                             (75) 

In the case where only self-similarity is required, e.g., as a function of density. That is 

            ( ) ( )s sG G  =                                      (76) 

then we get that 

                              ( )s sG  =                                                       (77) 

 

In this case 1 = − , it provides 1/f noise. If we require only self-similarity, we get from (71) and (77) that the 

noise spectrum of signals in the interval ( )0, is: 
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+ +

                           (78) 

Due to the physical image, the integrated a 
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to shape. 
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The integral is generally unpredictable. Fortunately, in the case of interest to us, if 0 2  the impropriety 
integral can be given in the closed-form: 

( )

( )
( )
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1
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

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
= =

+  +
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 

                                   (80) 

This gives (79) that 

      ( )
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The self-similar distribution function is thus the condition a shaped power spectrum: 

                             ( )
1

S





                                             (82) 

The above considerations can be generalized to a large extent. 

Namely, if instead of 0D
D


= in (64) use 

                                      0D
D


=                                       (83) 

We start from the stochastic process described by the equation, using normally distributed white noise as 
before in (62). Then the power spectrum will be: 

( )
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2

0

2
,

1

D
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 



−

=
+

                                (84) 

 

If we require only self-similarity, we get from (84) and (59) the noise spectrum of signals in the interval ( )0,  : 
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Due to the physical image, the integral is arranged into a form: 
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In the case of interest to us, if the 0 3 2  − +  the impropriety integral can be given again in closed form: 
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which gives from (78): 
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The self-similarity is again desired the power spectrum: 

    ( )
1

S





                                 (89) 

This result concludes to an important note: the self-similarity is a more fundamental feature of the noise than 

its 1/f shape. Support this we derive instead of the 1 f  the noise spectrum from thermodynamic fluctuations, 
[55]. 

3.5. Energy Dissipation 

Considering that the quantum theory of the dissipative systems is not adequately worked out, we stay within 
the range of the classical theory. We suppose that the pieces of information necessary for the communication 
are carried by the analog signals describing the physicochemical state of the individual cells. Furthermore, we 
are going to suppose that the self-similar Markov processes can represent the state of coaching biological 
subsystems. Gillespie could show that from this assumption, the equation describing the dynamics of processes 
can be concluded. This is the generalized Langevin equation [56]: 

( ) ( ) ( ) ( )
1

2
d

, , , 0,1,2, , 1
d

i
i j i j

X
A X t D X t t i N

t
= +  = −                   (90) 

where 

( ) ( )1

d 0
lim 0,d
t

t t−
→

 = N                                 (91) 

is the white-noise with zero mean value, infinite dispersion, and normal distribution. Let us decompose 

the ( ),i jA X t function into three parts: 

     ( ) ( ) ( )
1

0

,
N

i j i i i ik k
k

A X t f t A X c X
−

=

= + +                           (92) 

where the ikc elements form a cyclic matrix. 

0 1 1
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c c c
C

c c c

−

− −

 
 
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 
 
 

                                (93) 

( )i iA X can be nonlinear and the ( )if t is the time function generated by the internal active processes of the cell. 

It is reasonable to assume that ( )i iA X is identical for each cell, and at the same way, we may suppose that iD  is 

constant for each cell. This latter can be justified because each cellis to be found in the same heat conditions. 
We did not assumed any confinement for the ( )if t  function. The proposed equation is the generalization of the 
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model of the coupled damped oscillators, which showed [57] that the stochastic resonance is included in the 
forms of motion. We are going to examine a case where the social signal has low amplitude; therefore, the 
nonlinear members can be neglected. Then (91): 

( ) ( ) ( )
11

2

0

d
, 0,2, , 1

d

N
i

i ik k
k

X
f t c X D t i N

t

−

=

= + +  = −                 (94) 

 

3.6. Cellular Communication in a Noisy Environment 

The effective field strength of thermal noise was first calculated by Weaver and Astumian [58]. The Weaver & 
Astumian model (W-A model) assumed changes in the field strength result from fluctuations of space charges 
on both sides of the cellular membrane and further showed a thermal noise limit at low frequencies. Kaune 
[59] revisited the W-A model and showed that the field strengths typical of thermal noise converge to zero at 
low frequencies. Therefore, the W-A model does not describe this region appropriately. However, thermal noise 
in Kaune’s model [19] is assumed to be synchronized (coherent) over the entire cell membrane. This assumption 
is called the coherence condition. Unfortunately, thermal noise is unlikely to be coherent over a large structure 
such as a cell. Therefore, the calculation that followed is limited to a highly unlikely special case. Kaune set all 
noise-generators to be equipotential based on the coherence condition by assuming parallel connectivity and 
the equivalent electrical circuit. As the coherence condition does not hold in the general case, the equipotential 
assumption also does not hold in the general case. We generalized the problem and developed a solution [60]. 
Our results proved when there are only zero-mode currents present. The limit does not exist. However, at non-
zero currents, the thermal noise does limit the efficacy of electromagnetic effects in low frequencies. The zero 
mode is the action by central symmetry for all individual cells instead of the translation symmetry of the 
usually applied outside field effects. 

The topological construction is an essential factor of the cellular organization, [61], irrespective it is alive or not. 
The cellular structure, because of some topological reasons, develops preferring special coordination 
arrangements [62] and could arrange a self-organized collectivity [63] [64]. It was discovered that the division 
tendency is very low in the cell population, small in number [65]. For the start of a significant cell division, a 
critical cell density is necessary. This was later observed on a self-synchronization of chemical oscillators [66]. 
The topological importance was assumed in living cellular cultures also, [67], declaring that not the cell density 
but the position (coordination number) of cells related to each other determines what is favorable or not 
favorable from the point of view of division. This hypothesis was later justified experimentally [68]. 

The cells in developed multicellular living objects are grouped into organs to perform certain tasks in a network 
together. This network extends inside the cells and has suitable connection points outside the cell wall, ensuring 
with this to involve the cellular mechanisms in the tasks of the network. The cytoskeleton of the cells provides 
the basic cellular information-transfers intracellularly. The internal cytoskeleton network has transmembrane 
bridges (e.g., adherent connections, junctions) connecting the matrix structure on the outer side of the cell 
through the polar protein molecules [69]. The network develops by polymerization [70], where the water 
structures of aqueous electrolyte arrange the extracellular matrix partially. For example, the formed 
“intercellular filaments” in epithelial tissues implements the mechanical coupling of individual cells [71] [72]. 
Ordered water creates efficient proton conduction mechanisms [73] that disordered water does not have. The 
hydrogen bridges transport the protons, which is crucial in living systems [74]. This high-speed and low 
dissipation of the transport propagation is based on Grotthuss-mechanism [75]. 

The healthy cells are under the control of others in the network (“social” signaling [76], a collective action). 
Social information should spread within the body without loss of information. However, the environment is noisy, 
and the living information exchange faces this challenge. Now, we are going to prove that among the modes 
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belonging to the eigenvectors of the matrix (93) of equation (91), there are modes of zero noise spectrum. It is 
well known that any cyclic matrix can be diagonalized by the transformation matrix [77], that is 
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,                (95) 

where 2ei Na = . Applying this transformation to the Equation (94), we obtain: 
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Here the new coordinates and the eigenvalues of the cyclic matrix are 
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Let us consider any one of the new 

( ) ( )
1 1
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0

1 N
ik

si
k

t D a t
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=
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noise components for which 0k   (non-zero order component). Let us take the Fourier to transform thereof 
and consider that the amplitudes are unitary in the white-noise spectrum. Then we get that 
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−
−
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On the other hand, we know that 

                 
1

0

0
N

ik

k

a
−

−

=
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In consequence, every non-zero order mode is noiseless because:  

                                 ( ) 0, 0si t k =                                              (101) 

So the zero-order noises are not only limitless by thermal noises, but the signal exchange in such a way is 
noiseless. 

4. Conclusion 

The stochastic processes drive the homeostatic harmony, synchronizes the processes by environmental noises, 
while the system performs the important internal signal communications noiselessly. The dynamic stochastic 
living systems involve characteristic resonances. Particular resonant frequencies differentiate and describe the 
various enzymatic processes. 
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