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Abstract 
Background: The basal metabolic rate has a scaling by tumor mass on the exponent of 3/4, while a simple 
surface-supplied volume of the mass would have a lower exponent, 2/3. The higher exponent can be explained 
by optimizing the overall energy distribution in the tumor, assuming that the target is four-dimensional. There 
are two possible ways of approximating the metabolic rate of the malignant tumor: 1) the volume blood-supply 
remains, but the surface and the length of the vessel network are modified; or 2) assuming that the malignant 
cell clusters try to maximize their metabolic rate to energize their proliferation by the longer length of the 
vessels. Our objective is to study how vascular fractality changes due to the greater demand for nutrients due 
to the proliferation of cancerous tissue. Results: It is shown that when a malignant tumor remains in expected 
four-dimensional volumetric conditions, it has a lower metabolic rate than the maximal metabolic potential in 
the actual demand of the proliferating cancer tissue. By maximizing the metabolic rate in malignant conditions, 
the allometric exponent will be smaller than 3/4, so the observed “dimensionality” of the metabolic rate versus 
mass becomes greater than four. The first growing period is exponential and keeps the “four-dimensional 
volume”, but the growth process turns to the sigmoidal phase in higher metabolic demand, and the tumor uses 
other optimizing strategies, further lowering the scaling exponent of metabolic rate. Conclusion: It is shown that 
a malignant cellular cluster changes its metabolic scaling exponent when maximizing its energy intake in various 
alimentary conditions. 
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1. Introduction 

The highly organized living systems are energetically open and far from thermal equilibrium [1]. Its physical 
phenomena are collective and have strong physical roots [2]. Structures built up by anabolism and store 
information in the open system [3]. The living matter is heterogeneous, having numerous different electrolytes 
engulfed by specialized tissues or lipids enveloping isolated aqueous electrolytes in definite structures. The 
isolating layers control the chemical and physical reactions between the electrolytes and regulate the complex 
interactions. The fundamental division of electrolytes is between the cytosol (the intracellular electrolyte) and 
the Extracellular Matrix (𝐸𝐶𝑀). The membrane is a complexly organized multifunctioning part. This double lipid 
layer regulates the information and ionic exchange between the intra and extracellular reagents, having a vital 
role in the energy distribution and production of the entire system. The mass of the living object is volume 
dependent (scaling by 3), while the surface is scaled only by 2. Consequently, we expect an exponent for mass-
dependence of 

energy exchange (metabolism) as ⅔, the ratio of the cell surface to the cell volume ( (∝
𝑟2

𝑟3
= 𝑟2/3). So the 

expected metabolic power ( 𝑃𝑚𝑒𝑡  ) in rest state (Basal Metabolic Power, 𝐵𝑀𝑃) dependence vs. mass (𝑀) is 
expected: 

𝑃𝑚𝑒𝑡 = 𝐵𝑀𝑃 ∝ 𝑀
2

3 = 𝑀𝛼    

                                    (1) 

 

However, the experiments show a variation of exponents, the 𝛼 = ⅔ is not shared. When the metabolism is 
concentrated on surfaces, the 𝛼 ≈ ⅔. well approaches reality. On the other hand, when it is centered on the 
energy resources, the exponent is close to 𝛼 ≈ ¾. When the whole mass of the organism is involved in the 
metabolic energy exchange, the exponent is near to 𝛼 ≈ 1. In complete demand, the actual body-part (organ or 
whole-body) needs maximally available energy supply, proportional to its mass, so the scaling exponent is 𝛼 =

1 in this case [4]. In this case, the actual demand decides about the metabolic power and not the geometry. Of 
course, both the extremes are not ideal for the living object and could not follow evolutional requests. What is 
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optimal? Despite the different exponential power, one feature is strictly common, all the experiments show 
power-scale (called scaling) in a few orders of magnitudes of the parameters, which is linear in the double 
logarithmic plot: 

𝑙𝑛(𝑃𝑚𝑒𝑡) ∝ 𝛼 ∙ 𝑙𝑛(𝑀) (2) 

The scaling behavior is the consequence of the self-similarity of the living objects [5] [6]. The fundamental 
phenomenon behind it is the relative proportional change of the parameters [7]. The fundamental principle was 
oriented on the changes of the same organism, which has to grow in collective harmony, so the relative growth 
of parts must have balanced growth [8]. The structure and regulation of biosystems are complex. Various 
modern approaches have been developed in the last few decades to describe this complexity. The description 
of statistics of complex systems is far from the normal (Gaussian) distribution. Usually, power-law-tailed 
distributions (with a general exponent α) are applied: 

𝑓(𝑥) = 𝑥𝛼 (3) 

 

There are various phenomena, including social, economic, physical, chemical, and biological, to be described by 
this function [9] [10] [11] [12] [13]. Despite the somewhat different fields of applications of the power law, it has 
a common root in complex systems: self-organization. The simplest fingerprint of the self-organized complexity 
is the self-similar or scale-free structures characterized by a power function. This power-function relation 
magnifies the 𝑓(𝑥) by a constant only, 𝑚-dependent Ξ = 𝑚𝛼  value at any 𝑚 magnification of 𝑥: 

𝑓(𝑚𝑥) = (𝑚𝑥)𝛼 = 𝑚𝛼𝑥𝛼 = Ξ𝑥𝛼 = Ξ𝑓(𝑥) (4) 

 

Self-organization explains the evolution of the system [14], expressed in non-linear dynamics [15]. 

The objective of this present article focuses on analyzing the metabolic alimentation of the healthy tissues in 
normal conditions and the developing tumors in two different conditions: 

1) When the tumor metabolizes as a homeostatic organized unit, the theoretically expected allometric exponent 
corresponds with the optimal healthy allometry; 

2) When the tumor metabolism is not in such an “ideal” optimization of the metabolic supply, its alimentation is 
suboptimal, using the observed fractal behavior of its angio-structure. 

2. Method 

Fractal physiology describes the structural and dynamical properties of living organisms and their parts [16] 
[17], based on physical principles [18]. The self-similar behavior could be described by the normalized relative 
change of the magnitudes, similarly to the Weber-Fechner law [19] in psychophysics like: 

∆𝑓

𝑓
= 𝛼

∆𝑥

𝑥
      

     (5) 
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where α is a constant fitting factor. By integration, we get the (3): 

The self-similar functional relation makes a “scale-invariance” feature due to the independence of the 
magnification, which is the fundamental behavior of the fractal structures, too [20]. 

The power function is the central description of the scaling in (1), which bases the allometry of living organisms 
[21]. The original allometry idea was recognized almost a hundred years ago [22], but the exciting question of 
the energizing of the life phenomena explained in connection of allometry is a half-century-old knowledge [23]. 
The connection between the homeostatic energizing level and the basal metabolic rate (𝐵0) as a self-similar 
function of mass (𝑚) of living objects is [24]: 

𝐵0 = 𝑎𝑚𝛼 (7) 

where the two parameters are determined experimentally; a is the allometric coefficient, and α is the allometric 
exponent, and (7) is usually called bioscaling [25]. The usual regression analysis uses the logarithmic 
transformation of (7): 

𝑙𝑛𝐵0 = 𝛼 𝑙𝑛(𝑚) + 𝑙𝑛(𝑎) (8) 

which allows high linear accuracy and fits both parameters a and α well [26]. The literature has numerous 
debates about the theoretical allometric relation based on fractal calculus and the empirical fits based on 
probability calculus [27]. The 𝐵0 of living objects shows allometric scaling to its mass, which refers to the 
energy supply of the living mass of the volume. The (7) function gives a correct mathematical and biological 
framework for the complex bio-systems fractal studies [28]. The scaling power function of the mass describes 
it, and it has been shown valid in a broad category of living structures and processes [29]. The scaling 
considerations are applied not only in biology but broader, in the complete biosystem as well [30]. The 
importance of understanding the challenges of the complexity of human medicine was recognized on this basis 
[31] [32]. 

In a simple formulation, metabolic processes are surface-dependent, while the mass is proportional to the 
volume. Therefore, the exponent of their ratio mirrors their dimensionality, and consequently, the exponent is 
⅔ [33]. Complex living allometry most likely shows the exponent as ¾instead of ⅔ in a broad spectrum of 
living objects [34], or at least have no linearity in a double-logarithmic plot [35]. However, the large data-mining 
does not show an overall validity of the ¾ exponent over ⅔ [36]. The curvature could be size-dependent in 
developing clusters by their size [37]. The ¾exponent could be described as a relation between the three-
dimensional surface and the four-dimensional volume [38]. The explanation of the fourth dimension is based 
on the fractal structure of microcirculation [39], which supplies the energy demand according to a homeostatic 
equilibrium (𝐵0) in the living complexity. Life in this meaning is “four-dimensional”. Its metabolic exchange 
processes proceed on fractal surfaces, maximizing the available energy consumption, scaling even the 
fluctuation of the metabolic power in the universal scaling law as well [40]. 

The optimization of energy consumption was formulated rigorously by the scaling idea and discussed in a 
universal frame, even on the energy-consumption subcellular level, including the mitochondria and respiratory 
complexes [41]. The allometry shows a structural, geometrical constraint for living organisms in homeostatic 
equilibrium. 

ln(𝑓) = 𝛼 ln(𝑥) → 𝑓(𝑥) = 𝑥𝛼        (6) 
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The metabolic scaling in cancer development is critical [42]. Contrary to the homeostatic homogeneity of the 
healthy tissue [43]; the functional heterogeneity of the solid tumor allows an abnormal organ self-possession 
of multiple cell-types and electrolytes like the Extracellular Matrix (𝐸𝐶𝑀) lymph and blood-transports [44]. The 
tumor metabolism is based on the blood transport to the tumor. The logarithm of wet-weight of the tumor 
( 𝑚𝑤𝑒𝑡  ) and the tumor blood-flow ( 𝐵𝑡  ) have linear dependence [45], which was observed in model xenografts 
of ovarian cancer, so they have a bioscaling relation: 

where the exponent is close to ¾. 

The allometric scaling supposes three geometrical variables to define the optimization of the circulatory 
system in living objects: 

· The average length of the blood circulatory network (𝑙); 

· The surface of the relevant material exchange of the blood circulation system (𝑠); 

· The volume of the blood (𝑣). 

Furthermore, we suppose that these parameters are represented by the self-similar, self-organized functions 
of the L value, which is characteristic of a given organ. Hence:  

𝑙 ∝ 𝐿𝑎𝑙 ,𝑠 ∝ 𝐿𝑎𝑠 ,𝑣 ∝ 𝐿𝑎𝑣          (10) 

Using the theoretical fractal explanation, the conditions are: 𝑎𝑙 ≥ 1, 𝑎𝑠 ≥ 2 and 𝑎𝑣 ≥ 3, from where: 

where 0 ≤ 휀𝑙 ≤ 1, 0 ≤ 휀𝑠 ≤ 1, and 𝐿0 is the characteristic length. The first relation limits the pattern of the 
circulatory system to the maximum that could be planar, while the second is limited to a maximum, filling up a 
three-dimensional space. The third exponent 휀𝑣 could be calculated because the exponents are not independent. 
The volume is proportional to the product of the surface and length: 

𝑣 ∝ 𝑠 × 𝑙 (12) 

 

consequently 

휀𝑣 = 휀𝑙 + 휀𝑠 (13) 

Using these conditions, we obtain from (11): 

𝐿0 ∝ 𝑣
1

3+𝜀𝑣 → 𝑠 ∝ 𝑣
2+𝜀𝑠
3+𝜀𝑣        

       (14) 

Furthermore, the actual volume of the blood is proportional to the actual mass of the given system or organ: 

𝑣 ∝ 𝐿0
3+𝜀𝑣 ∝ 𝑚1 (15) 

log(𝐵𝑡) = −0.808 log(𝑚𝑤𝑒𝑡) − 0.436 𝑟2 = 0.79𝑝 < 0.001 

[𝐵𝑡 = 0.6466 ∙ 𝑚𝑤𝑒𝑡
−0.808] 

(9) 

𝑙 ∝ 𝐿0
1+𝜀𝑙 ,𝑠 ∝ 𝐿0

2+𝜀𝑠 ,𝑣 ∝ 𝐿0
3+𝜀𝑣         (11) 
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Considering (14) and (15), now we have: 

                    𝑠 ∝ 𝑚
2+𝜀𝑠

3+𝜀𝑙+𝜀𝑠                   (16) 

The metabolism is a surface-controlled mechanism, so (𝐵𝑀𝑅) ∝ 𝑠, consequently: 

     𝐵0 ∝ 𝑚
2+𝜀𝑠

3+𝜀𝑙+𝜀𝑠                    (17) 

If the living structure is geometric in conventional Euclidean meaning, then 휀𝑙 = 휀𝑠 = 휀𝑣 = 0and therefore 𝑎𝑙 =

𝑎𝑠 = 𝑎𝑣; consequently, the scaling is (𝐵𝑀𝑅) ∝ 𝑚𝛼, where 𝛼 =
2+𝜀𝑠

3+𝜀𝑙+𝜀𝑠
= ⅔. When at least one of the 휀𝑙 ≠ 0, 𝛼 ≠

⅔, which modifies the common simple dimensional approach of the metabolic processes. 

3. Results 

The allometry gives a possibility to describe the development of the tumor [46]. It is valid for the primary 
cancer lesions but not always applicable in metastases [47]. We are dealing with primary tumors only. There 
are two ways of approximating the allometric metabolic rate of a tumor: 
1) The theoretical approach accepts that a healthy life has a four-dimensional behavior connected to the highly 
self-organized, consequently self-similar hierarchic order [48], we fix the exponent to ¾. 

2) The experimental approach assumes that the cell cluster tries to maximize its metabolic rate [49], and this 
way, it modifies the scaling exponent from the value of ¾. 

Both approaches depend on the environmental conditions of the tumor, mainly on the nourishment of the cells. 

3.1. Optimal Alimentation to Maximum Metabolic Rate 

Evolution maximized the surface where the nutrients are transferred from the blood to the cells, ensuring the 
best conditions of the living object, so: 

𝑠(휀𝑙, 휀𝑠) = 𝑚𝑎𝑥 (18) 

 

This task is equivalent to the minimizing of the reciprocal value of the exponent in (16): 
3+𝜀𝑙+𝜀𝑠

2+𝜀𝑠
= 𝑚𝑖𝑛       

        (19) 

with constraint conditions of: 

0 ≤ 휀𝑙 ≤ 1, 0 ≤ 휀𝑠 ≤ 1      (20) 

 (19) can be transformed into 

    
3+𝜀𝑙+𝜀𝑠

2+𝜀𝑠
= 1 +

1+𝜀𝑙

2+𝜀𝑠
= 𝑚𝑖𝑛                       (21) 

 

Hence, considering (20), the minimum condition demands that: 

휀𝑙 = 0, 휀𝑠 = 1 (22) 
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Substituting (22) into (11), the exponents of the self-similar structures are: 

Consequently, in cases of ideal alimentation, these exponents are the fractal dimensions of the parameters of 
the network, and while the length is one dimensional, the surface is three, and the volume is four [38]. Because 
metabolism is a surface-regulated process, 𝑠 ∝ (𝐵𝑀𝑅), the scaling exponent of the metabolic rate versus mass 
using (16) is ¾: 

𝐵0 ∝ 𝑠 ∝ 𝑚
2+𝜀𝑠

3+𝜀𝑙+𝜀𝑠 = 𝑚
3

4     (24) 

and so 𝐵0 in the unit mass: 

     𝐵0

𝑚
∝ 𝑚−

1

4     (25) 

Primarily the blood stream provides the metabolic supply, so the fractality of the vascular network could be 
decisional in its allometric evaluation. The condition of (24) maximizes the blood flow energizing all the parts of 
the volume for their optimum, providing a maximum metabolic rate. 

In consequence of (24), the life prefers the large masses as more effective energy-consumers in a unit volume 
shown in (25). However, on another side this process could lead to the loss of complex information, developing 
higher instability of the system, arguing that this is a negative tendency manifest the “aging of life’s algorithm 
as a whole” [50]. The model could be applied by guessing when the energy supply is optimal, so the developed 
active surface cannot supply the actual demands. Two different sources are possible to create such a situation 
(1) the length of the supplier system changes (the constructional template differs), or (2) the volume of 
transport exchange is limited despite the growing demands. Various irregularities originate both challenges 
could be a symptom of disease, like cancer [51]. 

3.2. Suboptimal Alimentation for Tumor 

The malignancy usually demands a higher energy input from its healthy environment than the available. The 
tumor supply is suboptimal. The higher energy demand (usually exponential in starting phase [52] ) forces to 
increase the length of the vessel network. In cancerous clusters, contrary to (22), the vascular fractal 
dimension ( 𝐷𝑣  ) of the supplying blood-vessel network ( 𝑙 ∝ 𝐿0

𝐷𝑣) is larger than 1, ( 𝐷𝑣 ≥ 1) [51]; 
consequently 휀𝑙 ≠ 0 in the relation of (11). 𝐷𝑣  could be measured by the box-counting method [51]. 

According to (11), the actual active surface is evolutionary normal for self-organizing of healthy tissues ( 𝑠 ∝

𝐿0
3). The extra energy demand of the intensive proliferation changes the exponents of parameters in (11). In this 

case, the surface of the supply follows the evolution-requested exponent of 3 ( 휀𝑠 = 1from (22)) in the self-
similar conditions, but the requested length changes:  

𝑙 ∝ 𝐿0
1+𝜀𝑙 = 𝐿0

𝐷𝑣𝑠 ∝ 𝐿0
3           (26) 

where εl>0εl>0 modifies the power of the transport measures, so the fractal organization of the transport lines 
is different. This type of change could be formed by neoangiogenesis satisfying the higher energy demand in 
cancerous tissues and could cause abnormalities as inflammation, thrombosis, varicose veins modification of 
the arteries, etc. The corresponding power-law for the actual metabolic rate at the longer length of vessels, so 
the suboptimal metabolic rate in this phase ( 𝐵𝑠𝑜1 ) from (24) is: 

    𝐵𝑠𝑜1 ∝ 𝑚
2+𝜀𝑠

3+𝜀𝑙+𝜀𝑠 = 𝑚
3

4+𝜀𝑙 = 𝑚
3

3+𝐷𝑣                   (27) 

The apparent “dimension” of the reaction request for volume is (4 +휀𝑙) > 4, the dimension increases. According 
to 𝑙 ∝ 𝐿0

1+𝜀𝑙  the measurable fractal dimension of the blood vessel network is 𝐷𝑣 = 1 + 휀𝑙. In this way the 휀𝑙 is 

𝑙 ∝ 𝐿0
1, 𝑠 ∝ 𝐿0

3, 𝑣 ∝ 𝐿0
4           (23) 
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measurable by the fractal dimension of the vessel structures [53], for example, with the box-counting method 
[51]. When 𝐷𝑣 = 1.3 [53], 휀𝑙 = 0.3, and the scaling exponent is 𝛼 ≅ 0.7 > ⅔. The Microvessel Fractal Dimension 
(𝑀𝐹𝐷) (which is equivalent with ( 1 + 휀𝑙) for renal cell carcinoma ranges between 1.30 − 1.66 [54], and 
correlates well with the tumor Microvessel Density (𝑀𝑉𝐷) [54]. From (27) we know, when 휀𝑙 = 0.478, the 
scaling exponent describes a non-fractal-like structure, 𝛼 = ⅔.   

When the tumor growth is so intensive that the available length of the vessel network cannot deliver 
appropriate energy, then another possible deviation from the homeostatic self-organization happens. In this 
case, the volume of the delivered energy remains constant, which limits the energy supply. The tumor-growth 
turns to sigmoidal this stage [55], usually follows Weibull distribution due to the self-similar development [6]. 
This could happen in severe hypoxia, low oxygen saturation in blood, anemia, various hematological diseases. In 
this case, the volume of the supply follows the evolution-requested exponent of 4 (휀𝑣 = 1) (23), in the self-
similar conditions in [53], but the requested length and surface is not enough for the proper work, so 휀𝑙

, > 1 

and 휀𝑠 < 1. The self-similar conditions differ from (22) due to (13): 

 𝑙 ∝ 𝐿0
1+𝜀𝑙

,

𝑠

∝ 𝐿0
3−𝜀𝑙

,

𝑣 ∝ 𝐿0
4 

(28) 

 

Consequently, at fixed four-dimensional volume, the metabolic surface reactions behave by power-law of 
suboptimal metabolic rate in this phase: 

    𝐵𝑠𝑜2 ∝ 𝑚
2+𝜀𝑠

3+𝜀𝑙
,
+𝜀𝑠 = 𝑚

3−𝜀𝑙
,

4 = 𝑚
4−𝐷𝑣

,

4                    (29) 

Here the volume “dimension” of the reaction request is 4, but the actual conditions are worse than optimal. 
The 휀𝑙

,  again here also is measurable by the fractal dimension of the structures [56], in this case, the fractal 
dimension of the vessel system is 𝐷𝑣

, = 1 + 휀𝑙
, . For example, measuring the vascular fractal dimension in one 

disease as 𝐷𝑣
, = 1.41 [51], we use 휀𝑙

, = 0.41, so the scaling exponent is 𝛼 = 0.65. When 휀𝑙
, = 0.28 [56], the scaling 

exponent is 𝑝 = 0.68. At 휀𝑙
, = 0.33, the scaling exponent is the well-known 𝛼 = ⅔. 

The exponents of the active transport surface in the two suboptimal supplies 

                  𝛼 =
3

4+𝜀𝑙
=

3

3+𝐷𝑣
and𝛼′ =

3−𝜀𝑙
,

4
=

4−𝐷𝑣
,

4
                  (30) 

Both these exponents are smaller than the optimal, and the exponent in the second phase of growth is the 
smallest (Figure 1 ). 
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Figure 1. The allometric development with the various 
exponents. The initial phase of tumor growth is exponential, 
and the allometric scale follows the phase1 curve, while the 
intensive development further decreases the exponent, 
which turns to a sigmoid phase in a tumor-specific time. 
 
 

 

 

Following the idea of “4-dimensionality”, the volume dimension changes in 𝛼, while the active surface in 𝛼′. Both 
exponents are ≤ ¾because of the length fractal dimension > 1. The mechanisms which cause this modification 
are different. The same exponent could be only in Euclidean non-fractal case, when 𝐷𝑣 = 𝐷𝑣

, = 1. Due to 𝐷𝑣 <

3𝑎𝑛𝑑𝐷𝑣
, < 3, hence 𝛼 > 0.5𝑎𝑛𝑑𝛼′ > 0.25. The Mandelbrot calculated 2.7 for the fractal dimension of the 

arterial tree of the lung [57], which was supported by experiments later [58], the relevant changes are 𝛼 ≈

0.526𝑎𝑛𝑑𝛼′ ≈ 0.325. Both values are smaller than 𝛼 = ⅔. 

Both non-optimal situations (defect of the length of transport way or limited transport against the demands) 
make the tissue under-energized, and the exponent of the power-relation scaling down-regulated. In such a way, 
measuring the scaling exponent of metabolism and the fractal dimension of the supplying microvessels have a 
diagnostic value about the actual deviations from normal. 

4. Discussion 

The optimal alimentation in a healthy system makes the energy distribution balanced, supplying all 
requirements of the homeostatic state. The exponent ¾ has a strong predominance on a theoretical and 
empirical basis [59] in healthy homeostatic basal metabolic activity. The ideal nutrition supply supports 
ontogenic growth. However, at least at larger sizes, the cancer growth never happens with an optimal nutrition 
supply; the cells compete intensively for the available energy sources. 

The cancer is out of the overall homeostatic balance. The tumor development certainly has a higher energy 
supply due to its proliferation than its healthy counterpart needs. Due to the extra-large energy demand, the 
tumor development’s alimentation in most cases is far from optimal, so the tumor is in a permanent energy 
deficiency. When the oxygen supply is limited, the first attempt to produce more ATP is the massive 
fermentative use of glucose, a simple and quick production mechanism. The cell extends its ATP production to 
fermentation by non-mitochondrial respiration, abandoning the more complicated Kerbs-cycle in the 
mitochondria [60]. 

While the mitochondrial metabolism is always aerobic, its scaling exponent is nearly 𝛼 = ¾ [30]. However, the 
scaling of metabolic activity is also different in mitochondrial and non-mitochondrial processes [61]. The 
metabolic power not only depends on the active surface of the transport but also on the transport rate at the 
same active surface size. Due to the transport modifications at the changed metabolic pathway, the deviation 
from the ¾ exponent could be remarkable. The allometric scaling exponent of fermentative processes 
decreases to nearly ⅔. This last scaling exponent shows that the cell-membrane directly regulates the 
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fermentation, and the surface/volume ratio controls the complete process, which could be anticipated from the 
direct linear dependence of the lactate production ( 𝑉𝐿 ) on the glucose-intake ( (𝑉𝐺  ) with a slope of ≅ 1 [45]: 

 log(𝑉𝐿) = +0.977 log(𝑉𝐺) + 0.108 𝑟2 = 0.72𝑝 < 0.001 (31) 

   

while the bioscaling of the oxygen ( 𝑉𝑂2  ) and glucose ( 𝑉𝐺) intake [45] are even lower than ⅔, −0.570, and −0.523, 
respectively. 

Not only does the malignancy need an intensive extra metabolism. For example, the benthic invertebrates (n = 
215) have the lowest average scaling exponent ( 𝛼𝑚𝑒𝑎𝑛 = 0.63, [near to ⅔], 𝐶𝐼𝑚𝑒𝑎𝑛 = 0.18), which metabolizes in 
an anaerobic way [62]. No regulative factor exists when the cells are entirely independent, and the available 
alimentation is unlimited (like in most in vitro experiments). The metabolic rate is linearly proportional to the 
mass, so the exponent is 𝛼 ≅ 1 [30]. 

The metabolic transformation of the cells [63] is one of the well-recognized hallmarks of malignancy [64] that 
has an emerging intensive interest in the field of oncology [65], as the core hallmark of cancer [66]. The 
adaptation of mitochondria in energy-limited conditions is the focus of the research [67]. The tumor forces the 
development of the angiogenetic processes [68] and overcomes the energy limitations. The vascularity is 
promoted [69], and the rapid development by intensive proliferation supports the changes of the scaling 
behavior [70]. Without extra angiogenesis (starting clusters), only the ready-made capacity of the delivery is 
available, so the tumor has a suboptimal alimentation. In the beginning, its fractal structure was developed, 
which is similar to the healthy structure, so the four-dimensional scaling remains valid (28). 

When the tumor develops, the fractal structure of vascularity changes. Consequently, its fractal dimension 
changes too. The forced angiogenesis [68] tries to provide a sufficient supply to the hypoxic (insufficiently 
supported) tumor, and the structure changes rapidly, broadening the scaling exponent in a wide range [71]. The 
missing supply suppresses the scaling exponent, shown in (27). Still, the angiogenetic pool changes the trend, 
approaching linearity. The unlimited availability of nutrients for every cell realizes the linearity measured in vitro 
[48], limited to ~0.9 in vivo by insufficient oxygen transport [72]. However, the angiogenesis is usually not fast 
enough to supply the faster-growing larger tumors, so the inner part of the tumor becomes necrotic, forming 
a smaller living mass to supply, easing the energy distribution [68]. The essential message of the cases of 
insufficient alimentation from the calculations above is that when the fractal dimension of the supplying 
network grows, the scaling exponent decreases. The four-dimensionality and the allometry with the evolutional 
optimizing request are not the same approaches: further evolution conditions have a higher than four-
dimensional allometric scaling. The tumor mass is a somewhat indefinite parameter because the whole 
environment of the tumor suffers from suboptimal alimentation. Consequently, we tried to find a more 
fundamental networking condition parameter published elsewhere [73]. 

There is a vast number of researches about the vascular development of the tumor progression, calculating 
the fractal dimension of the vascularity. The in silico modeling of the growing tumor vessel architecture in high-
grade gliomas [74] shows that the fractal dimension is less than 1 in the avascular state and growing linearly 
by time, reaching 𝐷𝑡=2760ℎ ≅ 1.2 at 𝑡 = 2760ℎ, by slope approximately ≅ 6.2 ∙ 10−4. In a longer time, the 
development of the fractal dimension drastically changes, follows a less rapid development (slope ≅ 2.5 ∙ 10−4) 
until 𝐷𝑡=4000ℎ ≅ 1.48. We may assume that the fractal dimension 1.2 characterizes the finally developed vessel 
structure inside the tumor, followed by neo-angiogenetic processes reaching the tumor-surface, changing the 
vascular architecture, growing slower to the higher values of the fractal dimension. 

In optimal alimentation, the allometric scaling shows exponent ¾ (24); which supposes the 𝑙 ∝ 𝐿0
1, so the 

vascular fractal dimension in this case is 𝐷𝑣𝑎 = 1. However 𝐷𝑣𝑎 > 1 by the growing vessel network, so 𝛼 <
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3/4in the allometric scaling of tumor-vascularity due to the suboptimal energy supply, which triggers the 
angiogenesis. Using the results from in silico model-calculations, the internal 

growth of the vessels have (𝐵0)𝑖1 ∝ 𝑚
2.8

4 = 𝑚0.700, or (𝐵0)𝑖2 ∝ 𝑚
3

4.2 = 𝑚0.714, according to the assumption of 
suboptimal alimentation by maximal metabolic rate (case 1) or by the metabolic rate forced four-dimensional 
“optimizing” concept (case 2). When the external angiogenesis is developing, the allometry changes: (𝐵0)𝑒1 ∝

𝑚
2.52

4 = 𝑚0.63, and (𝐵0)𝑒2 ∝ 𝑚
3

4.48 = 𝑚0.67. So, the optimizing of the suboptimal energy availability in extended 
angiogenetic cases realizes the allometry, which fits the simple geometrical expectations 𝛼 = 2/3 well. 

The measurements of vascular fractal dimensions in various tumors show a lower scaling exponent than the 
ideal ¾, depending on the conditions of the tumor-angiogenesis development. For example, when the epithelial-
connective tissue interfaces with a malignant tumor in the oral mucosa, it is 𝐷𝑣𝑎 ≥ 1.41 [75], the scaling 
exponent in suboptimal alimentation situations in cases 1 and 2 are 𝛼 ≅ 0.64 and 𝛼 = 0.68. The last one (optimal 
distribution of the suboptimally available energy) is near the “conventional” ⅔. Another microscopic evaluation 
of angio-structures [76] shows lower values of 𝛼, like the fractal dimension of the normal and malignant tissues 
are 𝐷ℎ𝑒𝑎𝑙𝑡ℎ𝑦 ≅ 1.65 and 𝐷𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡 ≅ 1.74, respectively [77]; resulting in low 𝛼 values. In other evaluations, the 
vascular structure’s dimensionality grows to 1.9, which provides the maximal energy usage of the suboptimal 
alimentation, and the exponent became as low as 𝛼 = 0.525. 

It is interesting to see the effect of various anti-tumor treatments on the vascular fractal dimension. The 
treatment changes the vascularization and suppresses the fractal dimension forms 1.135 1.037, 0.933, 0.982 
by Photodynamic Therapy (PDT); Cysteine Proteases Inhibitors (CPI), combined therapy, PDT and CPI [78]; which 
corresponds in cases when the maximalizing of the energy-supply is equivalent to the allometric exponents of 
0.716, 0.741, 0.767 and 0.755, respectively (the optimal distribution of the suboptimal availability would be 
0.726, 0.743, 0.763, and 0.753). By treating VEGF165, the fractal dimension increases from 1.65 to 1.69, 
decreasing the allometric exponent [79] [80]. In matrigel inoculated human umbilical vein endothelial cells 
(HUVEC) treated by docetaxel, the fractal dimension of the vascular structure has decreased from 1.2 to 1.09, 
corresponding in case 1 𝛼𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ≅ 0.70;𝛼𝑡𝑟𝑒𝑎𝑡𝑒𝑑 ≅ 0.73,, and in case 2 𝛼𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ≅ 0.71;𝛼𝑡𝑟𝑒𝑎𝑡𝑒𝑑 ≅ 0.73 [81]. The 
fractal analysis is a successful and rather accurate method for monitoring the efficacy of angiogenic 
consequences of therapies [82]. 

(a) (b) 
Figure 2. The summary of the structure of calculation. (a) The biophysical considerations (b) The mathematical 
description. 
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5. Summary 

We had shown that the allometric relation of basal metabolic rate and the tumor mass depends on the fractal 
dimension of the vascular structure. Due to the desperate need for energy supply and the intensive proliferation 
of the malignant tumor, cancer does not have an optimal alimentation. Two strategies could distribute the 
available (not sufficient) energy by the main transport of it, the vascular network: 

1) Assuming that the cell cluster tries to maximize its metabolic rate by the surface transports and lowers the 
scaling exponent from the value of ¾; 

2) Accepting that in the case of a four-dimensional volumetric behavior limits the energy supply. The tumor 
optimizes the energy distribution in its volume in among these conditions. 

The structure of the biophysical considerations and their mathematical steps are summarized in Figure 2 . 

The two strategies in consequent phases of tumor growth optimize the available energy by different allometric 
scalings. The organized optimum of the suboptimal availability of energy gives lowered allometric scaling 
exponents. 
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