Add more content here...

KÍSÉRLETI ONKOTERMIA PUBLIKÁCIÓGYŰJTEMÉNY

Az Oncotherm rendszeresen tesz közzé publikációkat a releváns tudományos és orvosi szaklapokban, weboldalakon. Filozófiánk kiterjed a különböző kutatási szintek és alkalmazások közötti komplex interakcióra. Az alapkutatásokat (elméleti megfontolások és in-silico modellek) a laboratóriumi kísérletek követik in vitro és in vivo, preklinikai és utólagos klinikai publikációkkal. Minden lépés nemcsak a következő előrelépésekkel lép kölcsönhatásba, hanem befolyásolhatja a korrekciók, módosítások és további fejlesztések korábbi kutatási lépéseit. Ez a komplex kutatási rendszer lehetővé teszi számunkra, hogy készek legyünk felvenni a világirodalom legújabb eredményeit, és saját fejlesztést készítsünk az elérhető legmagasabb szinten.

Ezúton mutatjuk be Önöknek aktuális eredményeinket publikációinkkal, a laboratóriumitól a klinikai alkalmazásokig. Számos PubMed regisztrált publikációnk áll összhangban azokkal a kutatási témákkal, amelyek túlságosan technikai vonatkozásúak vagy egyszerűek a nem NCI regisztrált kiadóknak.

Ahhoz, hogy aktívan részt vegyünk oncotherm közösségünk képzésében, havonta tájékoztató hírleveleket küldünk ki, és évente háromszor közzétesszük az Oncothermia Journalt (ISSN 2191-6438), megosztva közösségünk tagjaival és már kutatókkal az onkotermia kutatási terület legaktuálisabb témáit. A folyóiratban meglehetősen sok publikáció található, amelyek megtalálhatóak a honlapon is (https://oncotherm.com/hu/oncothermia-journal).

Az Oncothermia az Oncotherm Kft. speciális módszere, modulált elektrohipertermia (mEHT) néven is ismert, mára már nanotermiaként is említik a vonatkozó szakirodalmak.

Oncothermia is the special method of Oncotherm Kft., became the trade-name of the treatment modality of modulated electro-hyperthermia (mEHT), and is nowadays mentioned as nanothermia in the relevant literature.

 

Kísérleti publikációk

Apoptosis

  • Modulated electro-hyperthermia-induced tumor damage mechanisms revealed in cancer models [[1]],
  • Modulated electro-hyperthermia resolves radioresistance of Panc1 pancreas adenocarcinoma and promotes DNA damage and apoptosis in vitro [[2]],
  • Elevated apoptosis and tumor stem cell destruction in a radioresistant pancreatic adenocarcinoma cell line when radiotherapy is combined with modulated electro-hyperthermia [[3]]
  • Relationship between energy dosage and apoptotic cell death by modulated electro-hyperthermia [[4]],
  • A modulált elektrohipertermia (mEHT) indukálta tumorkárosodás mechanizmusa kolorektális karcinóma modellben (Mechanism of action of modulated electro-hyperthermia (mEHT) induced tumor damage in col­orectal adenocarcinoma models) [[5]],
  • The presence of gold nanoparticles in cells associated with the cell-killing effect of modulated electro-hyperthermia [[6]],
  • Electro-hyperthermia inhibits glioma tumorigenicity through the induction of E2F1-mediated apoptosis [[7]],
  • Programmed cell death induced by modulated electro-hyperthermia [[8]],
  • A modulált rádiófrekvenciás (RF) hyperthermia (oncothermia) apoptózis-indukáló hatása immunhiányos egér xenograft tumorokban [The apoptosis-inducing effect of modulated radio-frequency (RF) hyperthermia (oncothermia) on immun deficient mouse xenograft tumors] [[9]],
  • Klinikai vizsgálatok és evidenciák a modulált vezetéses rádiófrekvenciás hyperthermia (oncothermia) alkalmazásában [Clinical trials and evidences of the application of modulated radio-frequency hyperthermia] [[10]],
  • Modulated electrohyperthermia causes caspase independent programmed cell death in HT29 colon cancer xenografts [[11]],
  • Modulated electro-hyperthermia induced programmed cell death in HT29 colorectal carcinoma xenograft [[12]],
  • DNA fragmentation-driven tumor cell degradation induced by modulated electro-hyperthermia [[13]],
  • DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia [[14]],
  • Upregulation of heat shock proteins and the promotion of damage-associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia [[15]],
  • Electro-hyperthermia up-regulates tumour suppressor Septin 4 to induce apoptotic cell death in hepatocellular carcinoma [[16]],
  • Modulated Electro‐Hyperthermia Induces a Prominent Local Stress Response and Growth Inhibition in Mouse Breast Cancer Isografts [[279]],

Abscopal effect

  • Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil I: Abskopaleffekte in der Onkologie, Vorwort und Einführung, [[17]],
  • Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil IIa: Fallbezogene Abskopaltherapie mit provoziert radiogenem Abskopaleffekt entsprechend einer radiogenen autologin spezifischen Immuntherapie (RASI), [[18]],
  • Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil IIb: Weitere fallbezogene Darstellungen der abskopaltherapie, [[19]],
  • Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil III: Literaturvergleich und Diskussion, [[20]],
  • Modulated electro-hyperthermia enhances dendritic cell therapy through an abscopal effect in mice [[21]],
  • Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy [[22]],
  • Modulated electro-hyperthermia induced loco-regional and systemic tumor destruction in colorectal cancer allografts [[23]],
  • Bystander effect of oncothermia [[24]],

Immune effects

  • Stress-induced, p53-mediated tumor growth inhibition of melanoma by modulated electrohyperthermia in mouse models without major immunogenic effects [[25]],
  • Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy [[26]],
  • Tumor specific stress and immune response induced by modulated electrohyperthermia in relation to tumor metabolic profiles [[27]]
  • Inhibition of proliferation, induction of apoptotic cell death and immune response by modulated electro-hyperthermia in C26 colorectal cancer allografts [[28]]
  • Towards the Immunogenic Hyperthermic Action: Modulated ElectroHyperthermia [[273]]
  • Potential enhancement of host immunity and anti-tumor efficacy of nanoscale curcumin and resveratrol in colorectal cancers by modulated electrohyperthermia [[293]]

Comparisons

  • In vitro comparison of conventional hyperthermia and modulated electro-hyperthermia [[29]],
  • Comparison of biological effects of modulated electro-hyperthermia and conventional heat treatment in human lymphoma U937 cells [[30]],
  • External Basic Hyperthermia Devices for Preclinical Studies in Small Animals [[289]]

Radiotherapy combination

  • Radiotherapy in combination with hyperthermia suppresses lung cancer progression via increased NR4A3 and KLF11 expression [[31]],
  • First in vitro evidence of modulated electro-hyperthermia treatment performance in combination with megavoltage radiation by clonogenic assay [[32]],
  • Quantitative estimation of the equivalent radiation dose escalation using radiofrequency hyperthermia in mouse xenograft models of human lung cancer [[33]],
  • Temperature mapping and thermal dose calculation in combined radiation therapy and 13.56 MHz radiofrequency hyperthermia for tumor treatment [[34]],
  • Molecular basis of modulated electro-hyperthermia combination with radio- and chemo-therapies [[35]]
  • The Efficacy of Radiation is Enhanced by Metformin and Hyperthermia Alone or Combined Against FSaII Fibrosarcoma in C3H Mice [[295]]

Chemotherapy combination

  • Modulated electro-hyperthermia induced p53 driven apoptosis and cell cycle arrest additively support doxorubicin chemotherapy of colorectal cancer in vitro [[36]],
  • Modulated electro-hyperthermia-enhanced liposomal drug uptake by cancer cells [[37]],

Veterinarian

  • Temperature increase induced by modulated electrohyperthermia (oncothermia®) in the anesthetized pig liver [[38]],
  • Oncothermia research at preclinical level [[39]],
  • Report of the pilot-study done for the proposed investigation on the possible synergic effect between high dose ascorbic acid application and oncothermia treatment [[40]],
  • Oncothermia basic research at in vivo level. The first results in Japan [[41]],
  • Diagnostic and therapeutic aspects of canine malignant melanoma. Part 2. Own experiences [[42]],

Temperature

  • Non-thermal effects of radiofrequency electromagnetic fields [[43]],
  • Strong synergy of heat and modulated electro- magnetic field in tumor cell killing, Study of HT29 xenograft tumors in a nude mice model [[44]],
  • Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia [[45]]
  • Messung der Temperaturverteilung am Modell der nicht perfundierten Schweineleber bei lokaler Hyperthermie mit Kurzwellen mit 13,56 MHz [[46]],
  • Deep temperature measurements in oncothermia processes [[47]],
  • Simulation and experimental evaluation of selective heating characteristics of 13.56 MHz radiofrequency hyperthermia in phantom models [[48]],
  • Transferrin as a thermosensitizer in radiofrequency hyperthermia for cancer treatment [[49]],
  • Iron-dextran as a thermosensitizer in radiofrequency hyperthermia for cancer treatment [[50]],
  • Temperature measurements during Oncothermia (Collection of temperature measurements in loco regional hyperthermia) [[51]],
  • Phantom measurements with the EHY-2030 device [[52]],
  • Non-thermal membrane effects of electromagnetic fields and therapeutic applications in oncology [[284]]
  • Radiofrequency electromagnetic fields cause non-temperature-induced physical and biological effects in cancer cells  [[296]]

Modulation

  • Physical analysis of temperature-dependent effects of amplitude-modulated electromagnetic hyperthermia [[53]],
  • Modulation effect in oncothermia [[54]],
  • Similarities of modulation by temperature and by electric field [[55]],
  • Physical potentials of radiofrequency hyperthermia with amplitude modulation [[56]]
  • Therapeutic Basis of Electromagnetic Resonances and Signal-Modulation [[280]]

Mixed molecular biology

  • Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage [[57]],
  • Early changes in mRNA and protein expression related to cancer treatment by modulated electro-hyperthermia [[58]],
  • Nanoheating without Artificial Nanoparticles Part II. Experimental support of the nanoheating concept of the modulated electro-hyperthermia method, using U937 cell suspension model [[59]],
  • Electric field regulation of chondrocyte biosynthesis in agarose gel constructs [[60]]
  • Regulation of Tonglian decoction on cell cycle and signal pathway mediated with NF-kB in cell line MGC-803 of gastric carcinoma [[61]],
  • Oncothermia basic research at in vivo level. The first results in Japan [[62]],
  • Oncothermia clinical & experimental studies in progress [[63]],
  • Oncothermia in laboratory [[64]],
  • Testing modulated electro-hyperthermia using C26 colorectal carcinoma cell line in vitro [[65]]
  • The efficiency of modulated electro-hyperthermia may correlate with the tumor metabolic profiles [[66]]
  • Molecular mechanisms of modulated electrohyperthermia (mEHT) induced tumor damage [[67]]
  • Modulated electro hyperthermia inhibits tumor progression in a triple negative mouse breast cancer model [[68]]
  • Radiotherapy and modulated electro-hyperthermia effect on Panc1 and Capan1 pancreas adenocarcinoma cell lines [[69]]
  • Tumor-growth
  • Lorus study report [[70]],
  • Exhaustion of Protective Heat Shock Response Induces Significant Tumor Damage by Apoptosis after Modulated Electro-Hyperthermia Treatment of Triple Negative Breast Cancer Isografts in Mice [[276]],

Theoretical & In silico studies

General reviews

  • Oncothermia and the paradigm shift in integrative oncology [[71]]
  • Modulated electro-hyperthermia, (mEHT) From LAB to clinic [[72]]
  • Basic principle and new results of Oncothermia [[73]]
  • Redefining Hyperthermia: A Not Temperature-Dependent Solution of The Temperature Problem [[74]]
  • Modulated Electro-Hyperthermia: Role in Developing Countries [[75]]
  • Local oncothermia treatment fights against systemic malignancy [[76]]
  • Oncothermia development in Hungary [[77]]
  • DEBATE treatment planning & thermometry [[78]]
  • Oncotherm a company devoted for innovation in oncological hyperthermia from 1988 [[79]]
  • Oncothermia is a kind of hyperthermia. Hot topics: temperature, dose, selectivity [[80]]
  • Oncothermia: New Method of Tumor Therapy [[81]],
  • The place and role of clinical hyperthermia in oncological thermotherapy: let’s define what we are talking about [[82]],
  • Workshop, local hyperthermia [[83]],
  • Local treatment with systemic effect: Abscopal outcome [[84]],
  • Oncothermia treatment of cancer: from the laboratory to clinic [[85]],
  • Preface for the book Challenges and solutions of oncological hyperthermia [[86]],
  • Hyperthermia versus oncothermia: Cellular effects in complementary cancer therapy [[87]],
  • Oncothermia: A new paradigm and promising method in cancer therapies [[88]],
  • A brief overview of hyperthermia in cancer treatment [[89]],
  • Oncothermia - Nano-heating paradigm [[90]],
  • Elektromágneses daganatterápiás készülék preklinikai és klinikai vizsgálatai, valamint műszaki továbbfejlesztése: tapasztalatok szolid tumorokkal (Preclinical and clinical investigation and development of electromagnetic oncological device - experience with solid tumors) [[91]],
  • Thermal and nonthermal effects of radiofrequency on living state and applications as an adjuvant with radiation therapy [[92]],
  • Challenges and Solutions in Oncological Hyperthermia [[93]],
  • Experiment with personalized dosing of hyperthermia [[94]],
  • Personalised dosing of hyperthermia [[95]],
  • Hyperthermie in der Tumortherapie [[96]],
  • Too hot for cancer [[97]],
  • Hyperthermia in oncology: A promising new method? [[98]],
  • Hyperthermia today: electric energy, a new opportunity in cancer treatment [[99]],
  • Hyperthermie in der Tumortherapie [[100]],
  • Stellenwert der Hyperthermie in der Onkotherapie [[101]],
  • Formen der Hyperthermie und klinische Ergebnisse [[102]],
  • "Quo vadis" oncologic hyperthermia? [[103]],
  • Quo vadis oncological Hyperthermia Update 2016 [[104]],
  • Quo vadis oncological hyperthermia (2020)? [[105]],
  • Critical Analysis Of Electromagnetic Hyperthermia Randomized Trials: Dubious Effect And Multiple Biases [[106]],
  • Essentials of oncothermia [[107]],
  • Hyperthermia versus oncothermia: Cellular effects in cancer therapy [[108]],
  • Renewing Oncological Hyperthermia-Oncothermia [[109]],
  • The History Of Hyperthermia Rise And Decline [[110]],
  • Oncothermie [[111]],
  • Traditionen und Reformen in der onkologischen Hyperhtermie [[112]],
  • What is against the acceptance of hyperthermia treatment? [[113]],
  • What is against the acceptance of hyperthermia? [[114]],
  • Hyperthermie in der Onkologie: eine aktuell beforschte Behandlungsmethode [[115]],
  • New Results, New Hopes [[116]],
  • Elektromagnetische Hyperthermieverfahren: die kapazitive Kopplung [[117]],
  • Hyperthermia for Oncology: An effective new treatment modality [[118]],
  • Hyperthermie in der Onkologie mit einem historischen Überblick [[119]],
  • Onkotermia fizika a rák ellen [[120]],
  • Electro-hyperthermia: a new paradigm in cancer therapy [[121]],
  • Hipertermia az onkológiában: onkotermia [[122]],
  • Komparative, retrospektive klinische Studie in Bezug auf mit Onkothermie behandelten [[123]],
  • Az ezerarcú víz [[124]],
  • The myriad-minded water [[125]],
  • The cancer revolution [[126]],
  • Burden of oncothermia – Why is it special? [[127]],
  • An allometric approach of tumor angiogenesis [[128]],
  • What is on the horizon for hyperthermic cancer therapy? [[129]],
  • „Hyperthermie: Wo bleibt die Evidenz?“ [[130]],
  • Front page illustration of Forum Medizine [[131]],
  • The Oncotherm story in personal view (History of modulated electro-hyperthermia) [[132]],
  • Cancer Treatment Approach at St. George Hospital [[133]],
  • Autoregulation of the brain temperature during whole body hyperthermia [[134]],
  • New cancer paradigm and new treatment: the example of METABLOC [[135]],
  • Hypoxia, Immunity, Metabolism and Hyperthermia [[136]],
  • Electromagnetic effects in nanoscale range [[137]],
  • Oncothermia treatment induced immunogenic cancer cell death [[138]],
  • Past, Present and Future of Oncothermia [[139]],
  • The Orientation, Application and Efficacy Evaluation of Hyperthermia in Integrative Natural Therapies of Cancer [[140]],
  • Ozone Therapy and Combined PRP Applications [[141]],
  • Hyperthermia: Thermal Trap and A thermal Solution [[142]],
  • Is an Integrative Cancer Therapy Concept (ICTC) the answer to improve the present situation in cancer care? [[143]],
  • Oncothermia is a kind of oncological hyperthermia – a review [[274]]
  • Summary and update of the method modulated electrohyperthermia [[275]]
  • Bevacizumab Plus FOLFOX-4 Combined With Deep Electro-Hyperthermia as First-line Therapy in Metastatic Colon Cancer: A Pilot Study [[277]]
  • The Growth of Healthy and Cancerous Tissues [[278]]
  • The Capacitive Coupling Modalities for Oncological Hyperthermia [[281]]
  • Allometric Scaling by the Length of the Circulatory Network [[283]]

  • Heterogeneous Heat Absorption Is Complementary to Radiotherapy [[290]]

  • Stimulation and Control of Homeostasis [[291]]

  • Stimulation and Control of HomeostasisForcing the Antitumor Effects of HSPs Using a Modulated Electric Field [[292]]

  • Supportive and Palliative Care in Cancer Therapies—Path from Tumor-Driven Therapies to Patient-Driven Ones [[294]]

Legal issues

  • Die Erstattungsfähigkeit hyperthermischer Behandlungen durch die GKV – Anspruch und Wirklichkeit nach dem Nikolaus – Beschluss des BVerfG [[144]],
  • Status and Prospect on Contemporary Natural Medicine [[145]],
  • Die Abbildung komplementarer Therapien im deutschen Gesundheitssystem-Kostenübernahme durch GKV und PKV [[146]],
  • Hyperthermie-Erstattung durch die GKV – Ein Überblick über die aktuelle Rechtsprechung anhand von vier Entscheidungen aus den Monaten August und September 2011 [[147]],
  • Neue Herausforderungen im Praxis- und Klinikmanagement: Prozessoptimierung durch echtes Factoring [[148]],
  • Regionale Elektrohyperthermie: Ordnungsgemäße Abrechnung und Erstattungsfähigkeit [[149]],
  • Lokale Hyperthermie wissenschaftliche und wirtschaftliche Aspekte und ihr Einfluss auf die Kostenübernahme durch die Krankenkasse [[150]],
  • Elektrohyperthermie: Erstattungfähingkeit und korrekte Abrechnung an aktuellen Beispielen aus der Rechtsprechung [[151]],

Books

  • Thermodynamic description of living homeostasis [[152]],
  • Development in oncological hyperthermia [[153]],
  • Challenges and solutions of oncological hyperthermia [[154]],
  • Electromagnetic effects in nanoscale range. Cellular Response to Physical Stress and Therapeutic Applications [[155]],
  • Hyperthermia in oncology [[156]],
  • Heat Therapy in oncology [[157]],
  • Local hyperthermia in Oncology – To Choose or not to Choose? [[158]],
  • Oncothermia – Principles and practices [[159]],
  • Physical background and technical realization of hyperthermia [[160]],
  • Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia [[161]],
  • Heat therapy in oncology, New paradigm in electro-hyperthermia [[162]],
  • Rescuing your own cancer: changing the microenvironment of the tumor to overcome cancer with self-healing [[163]],

Theses

  • Mechanism of modulated electro-hyperthermia induced tumor destruction in C26 colorectal cancer models [[164]],
  • Developments into electromagnetic stimulation of neural cells [[165]]
  • Electric field regulation of chondrocyte proliferation, biosynthesis, and cellular signaling [[166]]
  • Studio dei meccanismi fisiopatologici dell’ipertermia oncologica e dell’oncothermia [[167]]
  • Studies on modulated electrohyperthermia induced tumor cell death in a colorectal carcinoma model [[168]]
  • Preclinical investigation on the biological effects of modulated electro-hyperthermia [[169]]

Dose

  • Dose concept of oncological hyperthermia: Heat-equation considering the cell destruction [[170]],
  • Hyperthermia, a Modality in the Wings [[171]],
  • Heating, efficacy and dose of local hyperthermia [[172]],
  • Generalization of the thermal dose of hyperthermia in oncology [[173]],
  • Critical analysis of the thermodynamics of reaction kinetics [[174]],
  • Connections between the specific absorption rate and the local temperature [[175]],
  • Hyperthermia dosing and depth of effect [[176]],
  • Oncological hyperthermia: The correct dosing in clinical applications [[177]],
  • Performance comparison of electro-hyperthermia devices: EHY-2000plus and EHY-2030 [[178]]
  • Efficacy and dose of local hyperthermia [[179]]
  • Patient-specific simulation for selective liver tumor treatment with noninvasive radiofrequency hyperthermia [[286]]

Homeostasis

  • On the Dynamic Equilibrium in Homeostasis [[180]],
  • Study of the oxygen mass transfer in a gas-dispersing apparatus [[181]],
  • On the self-similarity in biological processes [[182]],
  • The intrinsic self-time of biosystems [[183]],

Blood-flow

  • Negative impedance interval of blood flow in capillary bed [[184]],
  • Non-Newtonian analysis of blood-flow [[185]],
  • Hyperthermic radiology. Why to combine? [[186]],
  • Non-Mechanical Energy Transfer of Electrically Neutral Electrolytes [[187]],
  • Hyperthermia and hypoxia: new developments in anticancer chemotherapy [[188]],

Field effects

  • Bioelectromagnetic paradigm of cancer treatment – Modulated electro-hyperthermia (mEHT) [[189]],
  • Do Field-Free Electromagnetic Potentials Play a Role in Biology? [[190]],
  • Effect of Curl-Free Potentials on Water [[191]],
  • Axial vector interaction with bio-systems [[192]],
  • Oncothermia: Complex therapy by EM and fractal physiology [[193]],
  • On the thermal noise limit of cellular membranes [[194]],
  • Role of electrical forces in angiogenesis [[195]],
  • Reorganization of actin filaments and microtubules by outside electric field [[196]],
  • Bioelectromagnetic interactions in agriculture: Controversial positions [[197]],
  • Device and procedure for measuring and examining the signal of systems releasing measurable signal during operation or in response to external excitation [[198]],
  • Industrial device for stimulating seeds [[199]],
  • Is the structure of the water convertible in physical way? [[200]],
  • Üzemi berendezés vetőmagvak stimulációjára [[201]],
  • Electrokinetics of temperature for development and treatment of effusions [[202]],
  • Bio-Electromagnetics without Fields: The Effect of the Vector Potential [[285]]
  • Time-Fractal Modulation—Possible Modulation Effects in Human Therapy [[287]]

Membrane effects

  • New Theoretical Treatment of Ion Resonance Biological Phenomena [[203]],
  • An energy analysis of extracellular hyperthermia [[204]],
  • Water states in living systems. I. Structural aspects [[205]],
  • Effect of cellular membrane resistivity inhomogeneity on the thermal noise-limit [[206]],
  • Heat penetration into the cell wall [[207]],
  • Response of bio-systems on white noise excitation [[208]],
  • Origin of pink-noise in bio-systems [[209]],
  • Physics of hyperthermia – Is physics really against us? [[210]],
  • Time-fractal modulation of modulated electro-hyperthermia (mEHT) [[211]],
  • Technical challenges and proposals in oncological hyperthermia [[212]],
  • Time-fractal modulation of modulated electro-hyperthermia (mEHT) [[213]]
  • Vascular Fractality and Alimentation of Cancer [[285]]

Nano heating

  • Immune effects by selective heating of membrane rafts of cancer-cells [[214]],
  • Heating of membrane raft of cancer-cells [[215]],
  • Nanoheating without Artificial Nanoparticles [[216]],
  • Electromagnetic effects in nanoscale range. Cellular Response to Physical Stress and Therapeutic Applications [[217]],
  • Heating preciosity - trends in modern oncological hyperthermia [[218]],
  • Energy absorption by the membrane rafts in the modulated electro-hyperthermia (mEHT) [[219]],

Cell-structures

  • Topological Correlation in amorphous structures [[220]],
  • Appearance of collectivity in two-dimensional cellular structures [[221]],
  • From Random Cellular Structure to the Honeycomb Pattern [[222]],
  • From two dimensional cellular structures to the honeycomb pattern [[223]],
  • Háromdimenziós sejtrendszerek topológiai összefüggései [[224]],
  • Topological aspects of ordering: Proceeding of the 7th Seminar of IFHT Heat Treatment Surface Engineering of Light Alloys [[225]],
  • Connections between Warburg’s and Szentgyorgyi’s Approach about the Causes of Cancer [[226]],
  • Reorganization of the cytoskeleton [[227]],
  • Why modulated electrohyperthermia (mEHT) destroys the rouleaux formation of erythrocytes? [[228]],
  • Bystander Effect of Oncothermia [[229]],

Other structural considerations

  • On the Aboav-Weaire law [[230]]
  • A short-range electronic instability in high Tc superconductors [[231]],
  • Synergetic model of the formation of non-crystalline structures [[232]],
  • On the topology of 2D polygonal and generalized cell systems [[233]],
  • Electronically Driven Short-Range Lattice Instability: Possible Role in Superconductive Pairing [[234]],
  • Correlation between the structural and electronic stability factors [[235]],
  • Fractal models for the autocatalytic growth of amorphous thin films [[236]],
  • Close-packed Frank-Kasper coordination and high critical temperature superconductivity [[237]],
  • On electronic structure and metastability [[238]],
  • Correlation of metastability, icosahedral symmetry and high-critical-temperature superconductivity [[239]],
  • The exact solution of the real square-lattice-gas system [[240]],
  • On the model calculation of the excitonic-like states and their possible role in autocatalytic processes [[241]],
  • One possible analytical approximation of the critical point of the three-dimensional Ising model [[242]],
  • Coherent potential approximation of the relationship between short-range order and the position of the fermi level on the state density curves [[243]],
  • Intrinsic Noise Monitoring of Complex Systems [[244]],
  • Modelling of the dissipative structure of water [[245]],
  • A synergetic representation for the double-structure model of liquid water [[246]],
  • Two-structure model of liquid water [[247]],
  • Self-organizing processes and dissipative structure formation in the non-crystalline materials [[248]],

Personalization

  • Oncothermia as personalized treatment option [[249]],
  • Notes on psychophysics [[250]],
  • Considering skin physiology in capacitive-coupled hyperthermia [[251]],
  • Oncothermia and traditional Chinese medicine [[252]],
  • Is an Integrative Cancer Therapy Concept (ICTC) the answer to improve the present situation in cancer care? [[253]],
  • Progress of research of hyperthermia integration with TCM in the treatment of cancer [[254]],

Complexity

  • Pink noise behaviour of the bio-systems [[255]],
  • Bio-response to White Noise Excitation [[256]],
  • Internal charge redistribution and currents in cancerous lesions [[257]],
  • An electrically driven instability: the living-state (Does the room temperature superconductivity exist?) [[258]],
  • Data mining and evaluation of single arm clinical studies [[259]],
  • Parametrization of survival measures, Part I: Consequences of self-organizing [[260]],
  • Parametrization of survival measures, Part II: Single arm studies, [[261]],
  • Parametrization of survival measures, Part III: Clinical evidences in single arm studies with endpoint of overall survival, [[262]]
  • Evaluation of clinical studies when no reference arm exists [[263]]
  • New look at an old principle: An alternative formulation of the theorem of minimum entropy production [[264]],
  • On the Feynman Ratchet and the Brownian motor [[265]],
  • On the extremum properties of thermodynamic steady state in non-linear systems [[266]],
  • Onsagerian quantum mechanics [[267]],
  • Nonequilibrium thermodynamic and quantum model of a damped oscillator [[268]],
  • Rosen-Chambers variation theory of linearly-damped classic and quantum oscillator [[269]],
  • Electromagnetic radiation
  • A mobiltelefonokból származó elektromágneses expozíció alakulása 900/1800/2100 MHz frekvencián [[270]],
  • Assessment of electromagnetically treated wheat kernel at 120Hz using the FDTD method [[271]],
  • Metal-framed spectacles and implants and specific absorption rate among adults and children using mobile phones at 900/1800/2100 MHz [[272]],
  • Time-Fractal in Living Objects [[288]]

 


[[1]]        Krenacs T, Meggyeshazi N, Forika G, et.al. (2020) Modulated electro-hyperthermia-induced tumor damage mechanisms revealed in cancer models, Int J Molecular Sciences, 21, 6270, pp. 1-25, doi:10.3390/ijms21176270,  https://www.mdpi.com/1422-0067/21/17/6270

[[2]]       Forika G, Balogh A, Vancsik T, Zalatnai A, et.al. (2020) Modulated electro-hyperthermia resolves radioresistance of Panc1 pancreas adenocarcinoma and promotes DNA damage and apoptosis in vitro, Int. J. Mol. Sci., 21, 5100, 1-15, https://pubmed.ncbi.nlm.nih.gov/32707717/

[[3]]       Forika G, Balogh A, Vancsik T. (2019) Elevated apoptosis and tumor stem cell destruction in a radioresistant pancreatic adenocarcinoma cell line when radiotherapy is combined with modulated electrohyperthermia, Oncothermia Journal 26:90-98,

https://oncotherm.com/sites/oncotherm/files/2019-07/Elevated_apoptosis_and_tumor_stem_cell.pdf

[[4]]       Kao P H-J, Chen C-H, Chang Y-W, et al. (2020) Relationship between energy dosage and apoptotic cell death by modulated electro-hyperthermia, Scientific reports, 10:8936, DOI: 10.1038/s41598-020-65823-2, https://www.nature.com/articles/s41598-020-65823-2

[[5]]       Krenacs T, Meggyeshazi N, Kovago Cs, et.al. (2019) A modulált elektrohipertermia (mEHT) indukálta tumorkárosodás mechanizmusa kolorektális karcinóma modellben (Mechanism of action of modulated elec­tro-hyperthermia (mEHT) induced tumor damage in col­orectal adenocarcinoma models), Magyar Onkológia, 63:359-364, https://www.ncbi.nlm.nih.gov/pubmed/?term=Mechanism+of+action+of+modulated+electro-+hyperthermia+(mEHT)+induced+tumor+damage+in+colorectal+adenocarcinoma+models

[[6]]       Chen C-C, Chen C-L, Li J-J, et.al. (2019) The presence of gold nanoparticles in cells associated with the cell-killing effect of modulated electro-hyperthermia, ACS Applied Bio Materials, 2, 3573-3581, https://doi.org/10.1021/acsabm.9b00453

[[7]]       Cha, J, Jeon T-W, Lee C-G, et al. (2015) Electro-hyperthermia inhibits glioma tumorigenicity through the induction of E2F1-mediated apoptosis, Int. Journal Hyperthermia, 31(7):784-792, http://www.ncbi.nlm.nih.gov/pubmed/26367194

[[8]]       Meggyeshazi N, Andocs G, Krenacs T. (2013) Programmed cell death induced by modulated electro-hyperthermia. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 187835, http://www.hindawi.com/archive/2013/187835/

[[9]]       Andocs G, Balogh L, Meggyeshazi N, Jakab Cs, Krenacs T, Szasz A. (2010) A modulált rádiófrekvenciás (RF) hyperthermia (oncothermia) apoptózis-indukáló hatása immunhiányos egér xenograft tumorokban [The apoptosis-inducing effect of modulated radio-frequency (RF) hyperthermia (oncothermia) on immune deficient mouse xenograft tumors]. Orvostovábbképző Szemle 2010. november különszám pp. 24-25.

[[10]]      Meggyeshazi N, Krenacs T, Szasz A. (2010) Klinikai vizsgálatok és evidenciák a modulált vezetéses rádiófrekvenciás hyperthermia (oncothermia) alkalmazásában [Clinical trials and evidences of the application of modulated radio-frequency hyperthermia]. Orvostovábbképző Szemle 2010. november különszám pp. 25-26.

[[11]]       Meggyeshazi N, Andocs G, Spisak S, et al. (2013) Modulated electrohyperthermia causes caspase independent programmed cell death in HT29 colon cancer xenografts. Virchows Arch 463(2):329,

[[12]]      Meggyeshazi N, Andocs G, Krenacs T. (2012) Modulated electro-hyperthermia induced programmed cell death in HT29 colorectal carcinoma xenograft. Virchows Arch 461 (Suppl 1): S131–S132

[[13]]      Meggyeshazi N, Andocs G, Balogh L, Krenacs T. (2011) DNA fragmentation-driven tumor cell degradation induced by modulated electro-hyperthermia. Virchows Arch 459 (Suppl 1): S204-205

[[14]]      Meggyeshazi N, Andocs G, Balogh L, et al. (2014) DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia. Strahlenther Onkol 190:815-822, http://www.ncbi.nlm.nih.gov/pubmed/24562547

[[15]]      Andocs G, Meggyeshazi N, Balogh L, et al. (2014) Upregulation of heat shock proteins and the promotion of damage-associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia. Cell Stress and Chaperones 20(1):37-46, http://www.ncbi.nlm.nih.gov/pubmed/24973890

[[16]]      Jeon T-W, Yang H, Lee CG, O ST, et.al. (2016) Electro-hyperthermia up-regulates tumour suppressor Septin 4 to induce apoptotic cell death in hepatocellular carcinoma, Int. J. Hyp., 7:1-9, http://dx.doi.org/10.1080/02656736.2016.1186290

[[17]]      Brockmann W-P. (2019) Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil I: Abskopaleffekte in der Onkologie, Vorwort und Einführung, Die Naturheilkunde/ Forum Komplementäre Onkologie, Ausgabe 4/2019, 6-7

[[18]]      Brockmann W-P. (2019) Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil IIa: Fallbezogene Abskopaltherapie mit provoziert radiogenem Abskopaleffekt entsprechend einer radiogenen autologin spezifischen Immuntherapie (RASI), Die Naturheilkunde/ Forum Komplementäre Onkologie, Ausgabe 5/2019, 3-5

[[19]]      Brockmann W-P. (2020) Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil IIb: Weitere fallbezogene Darstellungen der abskopaltherapie, Die Naturheilkunde/ Forum Komplementäre Onkologie, Ausgabe 1/2020, 3-5

[[20]]     Brockmann W-P. (2020) Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil III: Literaturvergleich und Diskussion, Die Naturheilkunde/ Forum Komplementäre Onkologie, Ausgabe 2/2020

[[21]]      Qin W, Akutsu Y, Andocs G, et al. (2014) Modulated electro-hyperthermia enhances dendritic cell therapy through an abscopal effect in mice. Oncol Rep 32(6):2373-2379, http://www.ncbi.nlm.nih.gov/pubmed/25242303

[[22]]     Tsang Y-W, Huang C-C, Yang K-L, et al. (2015) Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy, BMC Cancer 15:708, http://www.ncbi.nlm.nih.gov/pubmed/26472466

[[23]]    Vancsik T, Kovago Cs, Kiss E, et al. (2018) Modulated electro-hyperthermia induced loco-regional and systemic tumor destruction in colorectal cancer allografts, J Cancer, 9(1): 41-53, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743710/pdf/jcav09p0041.pdf

[[24]]     Andocs G, Meggyeshazi N, Okamoto Y, Balogh L, Szasz A. (2013) Bystander effect of oncothermia. Oncothermia Journal 7:343-347, https://oncotherm.com/sites/oncotherm/files/2017-07/Bystander_effect_of_oncothermia_T.pdf

[[25]]  Besztercei B, Vancsik T, Benedek A, et al. (2019) Stress-induced, p53-mediated tumor growth inhibition of melanoma by modulated electrohyperthermia in mouse models without major immunogenic effects, Int J Molecular Science, 20(16). pii: E4019. doi: 10.3390/ijms20164019, https://www.mdpi.com/1422-0067/20/16/4019

[[26]]     Tsang Y-W, Huang C-C, Yang K-L, Chi M-S, Chiang H-C, Wang Y-S, Andocs G, Szasz A, Li W-T, Chi K-H. (2015) Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy. Oncothermia Journal 15:55-66, https://oncotherm.com/sites/oncotherm/files/2017-07/Improving_immunological_tumor_microenvironment_using_electro-hyperthermia.pdf

[[27]]     Krenacs T, Benyo Z. (2017) Tumor specific stress and immune response induced by modulated electrohyperthermia in relation to tumor metabolic profiles Oncothermia Journal Volume 20: 264-272 https://oncotherm.com/sites/oncotherm/files/2017-10/Pages%20from%20Oncothermia%20Journal%20volume%2020-10_0.pdf

[[28]]     Vancsik T., Kiss E, Kovago Cs, Meggyeshazi N, Forika G, Krenacs T. (2017) Inhibition of proliferation, induction of apoptotic cell death and immune response by modulated electro-hyperthermia in C26 colorectal cancer allografts, thermometry Oncothermia Journal Volume 20 : 277-292 , https://oncotherm.com/sites/oncotherm/files/2017-10/Pages%20from%20Oncothermia%20Journal%20volume%2020-13.pdf

[[29]]    Yang K-L, Huang C-C, Chi M-S, Chiang H-C, Wang Y-S, Andocs G, et.al. (2016) In vitro comparison of conventional hyperthermia and modulated electro-hyperthermia, Oncotarget,  oi: 10.18632/oncotarget.11444, http://www.ncbi.nlm.nih.gov/pubmed/27556507

[[30]]  Andocs G, Rehman MU, Zhao Q-L, Tabuchi Y, Kanamori M, Kondo T. (2016) Comparison of biological effects of modulated electro-hyperthermia and conventional heat treatment in human lymphoma U937 cell, Cell Death Discovery (Nature Publishing Group), 2, 16039, http://www.nature.com/articles/cddiscovery201639

[[31]]      Son B, Jeon J, Lee, et.al. (2019) Radiotherapy in combination with hyperthermia suppresses lung cancer progression via increased NR4A3 and KLF11 expression, Int J. Radiat Biol, 2019 Sep 9:1-36. doi: 10.1080/09553002.2019.1665213, https://www.ncbi.nlm.nih.gov/pubmed/31498019

[[32]]     McDonald M, Jackson M, et.al. (2018) First in vitro evidence of modulated electro-hyperthermia treatment performance in combination with megavoltage radiation by clonogenic assay, Sci Rep. 8(1):16608. doi: 10.1038/s41598-018-34712-0,

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226525/

[[33]]  Prasad B, Kim S, Cho W, et.al. (2019) Quantitative estimation of the equivalent radiation dose escalation using radiofrequency hyperthermia in mouse xenograft models of human lung cancer, Scientific Reports, Nature, 9: 3942, https://www.nature.com/articles/s41598-019-40595-6

[[34]]     Kim J-K, Prasad B, Kim S. (2017) Temperature mapping and thermal dose calculation in combined radiation therapy and 13.56 MHz radiofrequency hyperthermia for tumor treatment. Proc. SPIE 10047, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVI, 1004718; http://spie.org/Publications/Proceedings/Paper/10.1117/12.2253163?origin_id=x4318

[[35]]     Szasz O. (2019) Molecular basis of modulated electro-hyperthermia combination with radio- and chemo-therapies: Oncothermia Journal 26:149-157, https://oncotherm.com/sites/oncotherm/files/2020-02/Molecular_basis_of_modulated_electrohyperthermia.pdf

[[36]]     Vancsik T, Forika G, Balogh A, et.al. (2019) Modulated electro-hyperthermia induced p53 driven apoptosis and cell cycle arrest additively support doxorubicin chemotherapy of colorectal cancer in vitro, Cancer Medicine, doi: 10.1002/cam4.2330, https://www.ncbi.nlm.nih.gov/pubmed/31183995

[[37]]     Tsang Y-W, Chi K-H, Huang C-C, et.al. (2019) Modulated electro-hyperthermia-enhanced liposomal drug uptake by cancer cells, International Journal of Nanomedicine, 14:1269-1579, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6475024/

[[38]]     Balogh L, Polyak A, Postenyi Z et al. (2016) Temperature increase induced by modulated electrohyperthermia (oncothermia®) in the anesthetized pig liver, Journal of Cancer Research and Therapeutics, 12(3):1153-1159, http://www.cancerjournal.net/article.asp?issn=0973-1482;year=2016;volume=12;issue=3;spage=1153;epage=1159;aulast=Balogh

[[39]]     Andocs G, Osaki T, Tsuka T, Imagawa T et al. (2013) Oncothermia research at preclinical level. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 272467, http://www.hindawi.com/archive/2013/272467/

[[40]]     Kovago Cs, Meggyeshazi N, Andocs G, Szasz A. (2013) Report of the pilot-study done for the proposed investigation on the possible synergic effect between high dose ascorbic acid application and oncothermia treatment. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 386913, http://www.hindawi.com/archive/2013/386913/

[[41]]      Andocs G, Okamoto Y, Kawamoto K, et al. (2013) Oncothermia basic research at in vivo level. The first results in Japan. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 197328, http://www.hindawi.com/archive/2013/197328/

[[42]]   Balint K, Balogh L, Postenyi Z, Andocs G, Szasz A, et.al. (2011) Diagnostic and therapeutic aspects of canine malignant melanoma. Part 2. Own experiences, Magyar Állatorvosok Lapja, 2011 július:424-431

[[43]]   Wust P, Kortum B, Strauss U, Nadobny J, Zschaeck S, Beck M, et.al. (2020) Non-thermal effects of radiofrequency electromagnetic fields, Scientific Reports, 10:13488, https://www.nature.com/articles/s41598-020-69561-3

[[44]]     Andocs G, Renner H, Balogh L, Fonyad L, Jakab C, Szasz A. (2009) Strong synergy of heat and modulated electro- magnetic field in tumor cell killing, Study of HT29 xenograft tumors in a nude mice model. Strahlentherapie und Onkologie 185:120–126, http://www.ncbi.nlm.nih.gov/pubmed/19240999

[[45]]     Prasad B, Kim S, Cho W, et.al. (2018) Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13,56-MHz radiofrequency hyperthermia, J Thermal Biology, 74:281-289, https://www.ncbi.nlm.nih.gov/pubmed/29801639

[[46]]     Herzog A. (2008) Messung der Temperaturverteilung am Modell der nicht perfundierten Schweineleber bei lokaler Hyperthermie mit Kurzwellen mit 13,56 MHz, Forum Hyperthermie, 1/10, 30-34,

[[47]]     Nagy G, Meggyeshazi N, Szasz O. (2013) Deep temperature measurements in oncothermia processes. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 685264, http://www.hindawi.com/archive/2013/685264/

[[48]]     Hossain MT, Prasad B, Park KS, et al. (2016) Simulation and experimental evaluation of selective heating characteristics of 13,56 MHz radiofrequency hyperthermia in phantom models, Int J Precision Eng and Manufacturing, 17(2):253-256, DOI: 10.1007/s12541-016-0033-9

[[49]] Chung H-J, Lee H-K, et.al. (2018) Transferrin as a thermosensitizer in radiofrequency hyperthermia for cancer treatment, Scientific Reports, published online: 10 September, 2018, 8:13505, https://www.nature.com/articles/s41598-018-31232-9.pdf

[[50]]     Chung H-J, Kim H-J, Hong S-T. (2019) Iron-dextran as a thermosensitizer in radiofrequency hyperthermia for cancer treatment, Appl Biol Chem, 62:24, 1-9,

[[51]]      Szasz O. (2011) Temperature measurements during Oncothermia (Collection of temperature measurements in loco regional hyperthermia). Oncothermia Journal 4:62-86, https://oncotherm.com/sites/oncotherm/files/2017-07/Temperature_measurements_during_oncothermia.pdf

[[52]]     Orczy-Timko B. (2020) Phantom measurements with the EHY-2030 device, in book Challenges and solutions of oncological hyperthermia, ed. Szasz A., Ch. 18, pp.416-428, Cambridge Scholars, https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia

[[53]]     Wust P, Ghadjar P, Nadobny J, et.al. (2019) Physical analysis of temperature-dependent effects of amplitude-modulated electromagnetic hyperthermia, Int. J. Hyp., 36(1):1246-1254, https://www.ncbi.nlm.nih.gov/pubmed/31818170

[[54]]     Szasz O, Andocs G, Meggyeshazi N. (2013) Modulation effect in oncothermia. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 395678, http://www.hindawi.com/archive/2013/398678/

[[55]]     Vincze Gy, Szasz A. (2018) Similarities of modulation by temperature and by electric field, OJBIPHY, 8, 95-103,  https://www.scirp.org/journal/PaperInformation.aspx?PaperID=84883

[[56]]     Wust P, Ghadjar P, Nadobny J, Beck M. (2019): Physical potentials of radiofrequency hyperthermia with amplitude modulation, Oncothermia Journal 26:128-137, https://oncotherm.com/sites/oncotherm/files/2019-07/Physical_potencials_of_radiofrequency_0.pdf

[[57]]     Fanning PJ, Emkey G, Smith RJ, et al. (2003) Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage The Journal of Biological Schemistry, 278(51):50940-50948, http://www.jbc.org/content/278/51/50940.full

[[58]]     Meggyeshazi N, Andocs G, Spisak S, et al. (2013) Early changes in mRNA and protein expression related to cancer treatment by modulated electro-hyperthermia. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 249563, http://www.hindawi.com/archive/2013/249563/

[[59]]     Andocs G, Rehman MU, Zhao QL, Papp E, Kondo T, Szasz A. (2015) Nanoheating without Artificial Nanoparticles Part II. Experimental support of the nanoheating concept of the modulated electro-hyperthermia method, using U937 cell suspension model, Biology and Medicine 7(4):1-9,

https://www.omicsonline.org/open-access/nanoheating-without-artificial-nanoparticles-part-ii-experimental-support-of-the-nanoheating-concept-of-the-modulated-electrohyperthermiamethod-0974-8369-1000247.php?aid=60362

[[60]]     Szasz N, Hung H, Sen S, et al. (2003) Electric field regulation of chondrocyte biosynthesis in agarose gel constructs, 49th Annual Meeting of the Orthopaedi Research Society, Poster Nr. 0672, https://www.ors.org/Transactions/49/0672.pdf

[[61]]      Yong-sen J, Bing-sheng H, Ji-an L, Hegyi G. (2013) Regulation of Tonglian decoction on cell cycle and signal pathway mediated with NF-kB in cell line MGC-803 of gastric carcinoma. Oncothermia Journal 7:167-169, https://oncotherm.com/sites/oncotherm/files/2017-07/Regulation_of_Tonglian_decoction_on_cell_cycle_and_signal_pathway_mediated_with_NF-kB_in_cell_line_MGC-803.pdf

[[62]]     Andocs G, Okamoto Y, Kawamotot, Osaki T, Tsuka T, Imagawa T, Minami S, Balogh L, Meggyeshazi N, Szasz O. (2013) Oncothermia basic research at in vivo level. The first results in Japan. Oncothermia Journal 7:296-300, https://oncotherm.com/sites/oncotherm/files/2017-07/Oncothermia_basic_research_at_in_vivo_level._The_first_results_In_Japan.pdf

[[63]]     Szasz A, Szasz O. (2014) Oncothermia clinical & experimental studies in progress. Oncothermia Journal 12:125-128, https://oncotherm.com/sites/oncotherm/files/2017-07/Oncothermia%20_-_clinical_and_experimental_studies_in_progress.pdf

[[64]]     Meggyeshazi N, Krenacs T, Andocs G, Szasz O. (2014) Oncothermia in laboratory. Oncothermia Journal 10:101-104, https://oncotherm.com/sites/oncotherm/files/2017-07/Oncothermia_in_laboratory.pdf

[[65]]     Kiss E, Vancsik T, Forika G, Hamar P, Krenacs T. (2017)Testing modulated electro-hyperthermia using C26 colorectal carcinoma cell line in vitro Oncothermia Journal Volume 20: 217-227 https://oncotherm.com/sites/oncotherm/files/2017-10/12.pdf 

[[66]]     Forika G, Vancsik T, Kiss E, Hujber Z, Sebestyen A, Krencz I, et.al. (2017) The efficiency of modulated electro-hyperthermia may correlate with the tumor metabolic profiles Oncothermia Journal, Volume 20 228-235, https://oncotherm.com/sites/oncotherm/files/2017-10/Pages%20from%20Oncothermia%20Journal%20volume%2020-7_0.pdf,

[[67]]     Krenacs T. (2018) Molecular mechanisms of modulated electrohyperthermia (mEHT) induced tumor damage; Oncothermia Journal 24: 426-441, https://oncotherm.com/sites/oncotherm/files/2018-10/Molecular_mechanisms_of_modulated_electrohyperthermia.pdf

[[68]]     Danics L, Schvarcz Cs, Zolcsak Z. (2018): Modulated electro hyperthermia inhibits tumor progression in a triple negative mouse breast cancer model; Oncothermia Journal 24: 442-454, https://oncotherm.com/sites/oncotherm/files/2018-10/Modulated_electro_hyperthermia_inhibits_tumor.pdf

[[69]]     Forika G. (2018): Radiotherapy and modulated electro-hyperthermia effect on Panc1 and Capan1 pancreas adenocarcinoma cell lines; Oncothermia Journal 24: 455 -463 , https://oncotherm.com/sites/oncotherm/files/2018-10/Radiotherapy_and_modulated_electro_hyperthermia.pdf

[[70]]     Peralta RC, Lee Y. (2007) Lorus study report. Oncothermia Journal 14:72-87, https://oncotherm.com/sites/oncotherm/files/2017-07/Lorus_study_report_0.pdf

[[71]]      Barich AJ, Daniilidis L, Marangos M. (2018): Oncothermia and the paradigm shift in integrative oncology; Oncothermia Journal 24:373-404 , https://oncotherm.com/sites/oncotherm/files/2018-10/Oncothermia_and_the_paradigm_shift.pdf

[[72]]     Szasz O, Szasz A. (2018): Modulated electro-hyperthermia, (mEHT) From LAB to clinic; Oncothermia Journal 23:24-61, https://oncotherm.com/sites/oncotherm/files/2018-09/Modulated_electro_hyperthermia_mEHT.pdf

[[73]]     Szasz A. (2018): Basic principle and new results of Oncothermia; Oncothermia Journal 22:178-205, https://oncotherm.com/sites/oncotherm/files/2018-03/Basic_principle_and_new_results_of_Oncothermi.pdf

[[74]]     Roussakow S. (2018): Redefining Hyperthermia: A Not Temperature-Dependent Solution of The Temperature Problem; Oncothermia Journal 22: 116-150, https://oncotherm.com/sites/oncotherm/files/2018-03/Redefining_Hyperthermia.pdf

[[75]]     Minnaar CA., Kotzen JA., Baeyens A. (2018): Modulated Electro-Hyperthermia: Role in Developing Countries; Oncothermia Journal 22: 57-66, https://oncotherm.com/sites/oncotherm/files/2018-03/Modulated_Electro_Hyperthermia.pdf

[[76]]     Szasz A. (2018) Local oncothermia treatment fights against systemic malignancy; Oncothermia Journal 22: 58-84, https://oncotherm.com/sites/oncotherm/files/2018-03/Local_oncothermia_treatment.pdf

[[77]]     Szasz O. (2018): Oncothermia development in Hungary; Oncothermia Journal 22: 85-102, https://oncotherm.com/sites/oncotherm/files/2018-03/Oncothermia_development_in_Hungary.pdf

[[78]]     Van Rhoon G, Szasz A. (2017) DEBATE treatment planning & thermometry Oncothermia Journal Volume 20 : 273-276 , https://oncotherm.com/sites/oncotherm/files/2017-10/Pages%20from%20Oncothermia%20Journal%20volume%2020-12.pdf

[[79]]     Szasz O. (2017) Oncotherm a company devoted for innovation in oncological hyperthermia from 1988 Oncothermia Journal Volume 20: 102-104 https://oncotherm.com/sites/oncotherm/files/2017-10/Pages%20from%20Oncothermia%20Journal%20volume%2020%20v1_0.pdf

[[80]]     Szasz A. (2017) Oncothermia is a kind of hyperthermia. Hot topics: temperature, dose, selectivity Oncothermia Journal Volume 20: 105-120 , https://oncotherm.com/sites/oncotherm/files/2017-10/Pages%20from%20Oncothermia%20Journal%20volume%2020_0.pdf

[[81]]      Shalan N. (2016) Oncothermia: New Method of Tumor Therapy. Oncothermia Journal 18:180-190, https://oncotherm.com/sites/oncotherm/files/2017-07/Oncothermia_-_New_Method_of_Tumor_Therapy.pdf ,

[[82]]     Roussakow SV. (2016) The place and role of clinical hyperthermia in oncological thermotherapy: let’s define what we are talking about. Oncothermia Journal 18:103-115, https://oncotherm.com/sites/oncotherm/files/2017-07/The_place_and_role_of_clinical_hyperthermia_in_oncological_thermotherapy_-_let%27s_define_what_we_are_talking_about.pdf

[[83]]     Szasz O. (2016) Workshop, local hyperthermia. Oncothermia Journal 18:64-102, https://oncotherm.com/sites/oncotherm/files/2017-07/Workshop%2C_local_hyperthermia.pdf

[[84]]     Szasz O. (2020) Local treatment with systemic effect: Abscopal outcome, in book Challenges and solutions of oncological hyperthermia, ed. Szasz A., Ch. 11, pp.192-205, Cambridge Scholars, https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia

[[85]]     Andocs G, Szasz O, Szasz A. (2009) Oncothermia treatment of cancer: from the laboratory to clinic. Electromagn Biol Med 28(2):148–165, http://www.ncbi.nlm.nih.gov/pubmed/19811397

[[86]]     Szasz A. (2020) Preface, for the book Challenges and solutions of oncological hyperthermia, ed. Szasz A., pp. viii-Xiii, Cambridge Scholars, https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia

[[87]]     Hegyi G, Szigeti GP, Szasz A. (2013) Hyperthermia versus oncothermia: Cellular effects in complementary cancer therapy. Evid Based Complement Alternat Med 2013:672873, http://www.hindawi.com/journals/ecam/2013/672873/

[[88]]     Hegyi G, Szasz O, Szasz A. (2013) Oncothermia: A new paradigm and promising method in cancer therapies. Acupuncture and Electro-Therapeutics Res. Int. J. 38:161-197, http://www.ncbi.nlm.nih.gov/pubmed/24494322

[[89]]     Baronzio G, Parmar G, Ballerini M, Szasz A, et al. (2014) A brief overview of hyperthermia in cancer treatment. Journal of Integrative Oncology, 3:1

[[90]]     Szasz O, Szasz A. (2014) Oncothermia - Nano-heating paradigm. J Cancer Sci Ther 6:4, http://www.omicsonline.org/open-access/oncothermia-nanoheating-paradigm-1948-5956.1000259.pdf

[[91]]      Dank M, Balogh A, Benedek A, et.al. (2019) Elektromágneses daganatterápiás készülék preklinikai és klinikai vizsgálatai, valamint műszaki továbbfejlesztése: tapasztalatok szolid tumorokkal (Preclinical and clinical investigation and development of electromagnetic oncological device - experience with solid tumors), Magyar Onkológia, 63:354-358, https://www.ncbi.nlm.nih.gov/pubmed/31821390

[[92]]     Szasz A. (2019) Thermal and nonthermal effects of radiofrequency on living state and applications as an adjuvant with radiation therapy, Journal of Radiation and Cancer Research, 10:1-17, http://www.journalrcr.org/article.asp?issn=2588-9273;year=2019;volume=10;issue=1;spage=1;epage=17;aulast=Szasz

[[93]]     Szasz A. (2013) Challenges and Solutions in Oncological Hyperthermia. Thermal Med 29(1):1-23, https://www.jstage.jst.go.jp/article/thermalmed/29/1/29_1/_article

[[94]]     Szigeti GyP, Szasz O, Hegyi G. (2020) Experiment with personalised dosing of hyperthermia, chapter 15 in book Current topics in medicine and medical research Vol. 3.  Ed. by Dr. Shigenori Ito, pp. 140-157, http://bp.bookpi.org/index.php/bpi/catalog/book/232

[[95]]     Szigeti GyP, Szasz O, Hegyi G. (2016) Personalised dosing of hyperthermia, Journal of Cancer Diagnosis, 2016, 1:107, https://www.omicsonline.org/open-access/personalised-dosing-of-hyperthermia-.pdf

[[96]]   Douwes FR. (2006) Hyperthermie in der Tumortherapie. Natum, Mitteilungen 6, 2006

[[97]]   Douwes FR. (2000) Too hot for cancer. Alternative Medicine 37:1-2

[[98]]     Hager ED, Birkenmeier J, Popa C. (2006) Hyperthermia in oncology: A promising new method?, Translation of publication of Deutsche Zeitschrift für Onkologie, 38:100-107,

[[99]]     Fiorentini G, Szasz A. (2006) Hyperthermia today: electric energy, a new opportunity in cancer treatment. J Cancer Res Ther 2(2):41–46, http://www.ncbi.nlm.nih.gov/pubmed/17998673

[[100]]   Douwes FR. (2006) Hyperthermie in der Tumortherapie. Natum, Mitteilungen 6, 2006

[[101]]    Hager ED. (1998) Stellenwert der Hyperthermie in der Onkotherapie. Forschung und Praxis, Gesundes Leben 1/98,

[[102]]   Hager ED. (1997) Formen der Hyperthermie und klinische Ergebnisse. Z. Onkol. / J. of Oncol. 29(3):78-83

[[103]]   Szasz A. (2013) "Quo vadis" oncologic hyperthermia? Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 201671, http://www.hindawi.com/archive/2013/201671/

[[104]]    Szasz A. (2016) Quo vadis oncological Hyperthermia Update 2016. Oncothermia Journal 18:12-41, https://oncotherm.com/sites/oncotherm/files/2017-07/Quo_vadis_oncological_Hyperthermia_Update_2016.pdf

[[105]]   Lee S-Y, Fiorentini G, Szasz AM, Szigeti Gy, Szasz A, Minnaar CA. (2020) Quo vadis oncological hyperthermia (2020)? Frontiers in Oncology, 20:1690, doi: 10.3389/fonc.2020.01690, https://www.frontiersin.org/articles/10.3389/fonc.2020.01690/full

[[106]]   Roussakow S. (2013) Critical Analysis Of Electromagnetic Hyperthermia Randomized Trials: Dubious Effect And Multiple Biases. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 412186, http://www.hindawi.com/archive/2013/412186/

[[107]]    Szasz O. (2013) Essentials of oncothermia. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 159570, http://www.hindawi.com/archive/2013/159570/

[[108]]   Szigeti GyP, Hegyi G, Szasz O. (2013) Hyperthermia versus oncothermia: Cellular effects in cancer therapy. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 274687, http://www.hindawi.com/journals/ecam/2013/672873/

[[109]]   Szasz O. (2013) Renewing Oncological Hyperthermia-Oncothermia. Open Journal of Biophysics, 3:245-252, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=38154

[[110]]    Roussakow S. (2013) The History Of Hyperthermia Rise And Decline. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 428027, http://www.hindawi.com/archive/2013/428027/

[[111]]     Szasz A. (2008) Oncothermie. OM & Ernährung Fachinformation, Nr.123, F22-F23

[[112]]     Szasz A. (2008) Traditionen und Reformen in der onkologischen Hyperthermie. Forum Hyperthermie 3:20-21, https://www.researchgate.net/publication/275828111_Traditionen_und_Reformen_in_der_onkologischen_Hyperhtermie

[[113]]     Szasz A. (2007) What is against the acceptance of hyperthermia treatment? Forum Hyperthermie 144:3-7

[[114]]     Szasz A. (2006) What is against the acceptance of hyperthermia? Die Naturheilkunde Forum-Medizine 83:3–7

[[115]]    Szasz A, Szasz N, Szasz O. (2004) Hyperthermie in der Onkologie: eine aktuell beforschte Behandlungsmethode. Integrative onkologie 1: 19-27

[[116]]    Szasz A, Szasz O, Szasz N. (2004) New Results, New Hopes. Indian Association for Hyperthermic Oncology and Medicine 2. pp. 1-5.

[[117]]     Szasz A. (2003) Elektromagnetische Hyperthermieverfahren: die kapazitive Kopplung. Forum Komplementare Onkologie Hyperthermie, 4:III–IX, http://studylibde.com/doc/3026289/elektromagnetische-hyperthermieverfahren--die-kapazitive-...

[[118]]    Szasz A, Szasz N, Szasz O. (2003) Hyperthermia for Oncology: An effective new treatment modality. Integrative onkologie 1: 1-13

[[119]]    Szasz A, Szasz N, Szasz O. (2003) Hyperthermie in der Onkologie mit einem historischen Überblick. Deutche zeitschrift für onkologie 35: 140-154, https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2003-43178

[[120]]   Szasz A, Szasz O, Szasz N. (2002) Onkotermia fizika a rák ellen. Fizikai szemle 52(2):45-52

[[121]]     Szasz A, Szasz O, Szasz N. (2001) Electro-hyperthermia: a new paradigm in cancer therapy. Deutsche Zeitschrift fur Onkologie 33:91–99, http://real.mtak.hu/6593/

[[122]]    Szasz A, Szasz O, Szasz N. (2001) Hipertermia az onkológiában: onkotermia. Medius Anonymus 11(9):32-33, http://real.mtak.hu/6594/

[[123]]    Szasz A. (1999) Komparative, retrospektive klinische Studie in Bezug auf mit Onkothermie behandelten. Bauchspeicheldrüsenkrebs. pp. 1-7

[[124]]    Szendro P, Szasz A, Szoke Sz. (1998) Az ezerarcú víz. Öntözés Gazdálkodás 36:3-10

[[125]]    Szendro P, Szasz A, Szoke Sz. (1998) The myriad-minded water. Hungarian Agricultural Engineering 11:17-20

[[126]]    Salvin S. (2016) The cancer revolution, Win-win Health Intelligence Limited, http://thecancerrevolution.co.uk/wp-content/uploads/2016/03/Prof-Slavin-CTCI-Appendix-1.pdf

[[127]]    Szasz O. (2013) Burden of oncothermia – Why is it special? Hindawi Publishing Corporation Conference Papers in medicine, Volume 2013, Article ID 938689; http://www.hindawi.com/archive/2013/938689/

[[128]]   Szasz O, Vincze G, Szigeti GP, Benyo Z, Szasz A. (2018) An allometric approach of tumor-angiogenesis, Medical Hypothesis, 116:74-78, https://www.sciencedirect.com/science/article/pii/S030698771830015X

[[129]]    Szigeti GP, Lee DY, Hegyi G. (2017) What is on the horizon for hyperthermic cancer therapy? J Traditional Medicine and Clinical Naturopathy, 6:2, 1000217, https://www.omicsonline.org/open-access/what-is-on-the-horizon-for-hyperthermic-cancer-therapy.php?aid=88372

[[130]]   Herzog A. (2011) „Hyperthermie: Wo bleibt die Evidenz?“ Oncothermia Journal 2:19-26, https://oncotherm.com/sites/oncotherm/files/2017-07/Hyperthermie_-_wo_bleibt_die_evidenz.pdf

[[131]]     Andocs G. (2008) Front page illustration of Forum Medizine. Forum Hyperthermia, 1/10, Forum Medizin

[[132]]    Szasz A. (2011) The Oncotherm story in personal view (History of modulated electro-hyperthermia). Oncothermia Journal 4:31-61, https://oncotherm.com/sites/oncotherm/files/2017-07/The_oncotherm_story_in_personal_view.pdf

[[133]]    Douwes FR. (2012) Cancer Treatment Approach at St. George Hospital. Oncothermia Journal 6:34-45, https://oncotherm.com/sites/oncotherm/files/2017-07/Cancer_treatment_approach_at_St._George_Hospital.pdf

[[134]]    Mitagravia N, Bicher J, Devdariani M, Davlianidze L, Nebieridze M, Momtselidze N. (2013) Autoregulation of the brain temperature during whole body hyperthermia. Oncothermia Journal 7:62-68, https://oncotherm.com/sites/oncotherm/files/2017-07/Autoregulation_of_the_brain_temperature_during_whole_body_hyperthermia.pdf

[[135]]    Schwartz L, Summa M, Steyaert JM, Vergne AG, Baronzio GF. (2013) New cancer paradigm and new treatment: the example of METABLOC. Oncothermia Journal 7:120-125, https://oncotherm.com/sites/oncotherm/files/2017-07/New_cancer_paradigm_and_new_treatment_-_the_example_of_METABLOC.pdf

[[136]]    Baronzio GF, Kiselevsky M, Ballerini M, Cassuti V, Schwartz L, Freitas I, Fiorentini G, Parmar G (2013) Hypoxia, Immunity, Metabolism and Hyperthermia. Oncothermia Journal 7:127-131, https://oncotherm.com/sites/oncotherm/files/2017-07/Hypoxia%2C_Immunity%2C_Metabolism_and_Hyperthermia.pdf

[[137]]    Szasz A. (2013) Electromagnetic effects in nanoscale range. Oncothermia Journal 9:11-25, https://oncotherm.com/sites/oncotherm/files/2017-07/Electromagnetic_effects_in_nanoscale_range.pdf

[[138]]    Andocs G, Meggyeshazi N, Okamoto Y, Balogh L, Kovago Cs, Szasz O. (2013) Oncothermia treatment induced immunogenic cancer cell death. Oncothermia Journal 9:28-37, https://oncotherm.com/sites/oncotherm/files/2017-07/Oncothermia_treatment_induced_immunogenic_cancer_cell_death.pdf

[[139]]    Szasz O. (2013) Past, Present and Future of Oncothermia. Oncothermia Journal 9:55-69, https://oncotherm.com/sites/oncotherm/files/2017-07/Past%2C_Present_and_Future_of_Oncothermia.pdf

[[140]]    Pang CLK. (2014) The Orientation, Application and Efficacy Evaluation of Hyperthermia in Integrative Natural Therapies of Cancer. Oncothermia Journal 10:15-27, https://oncotherm.com/sites/oncotherm/files/2017-07/The_orientation%2C_application_and_efficacy_evaluation_of_hypethermia.pdf

[[141]]     Cakir R. (2014) Ozone Therapy and Combined PRP Applications. Oncothermia Journal 10:35-39, https://oncotherm.com/sites/oncotherm/files/2017-07/Ozone_therapy_and_combined_PRP-applications.pdf,

[[142]]    Roussakow S. (2014) Hyperthermia: Thermal Trap and Athermal Solution. Oncothermia Journal 10:57-57, https://oncotherm.com/sites/oncotherm/files/2017-07/Hyperthermia_thermal_trap_and_athermal_solution.pdf

[[143]]    Douwes FR. (2012) Is an Integrative Cancer Therapy Concept (ICTC) the answer to improve the present situation in cancer care? Oncothermia Journal 6:27-32, https://oncotherm.com/sites/oncotherm/files/2017-07/Is_an_integrative_cancer_therapy_concept_%28ICTC%29_the_answer.pdf

[[144]]    Breitkreutz F. (2011) Die Erstattungsfähigkeit hyperthermischer Behandlungen durch die GKV – Anspruch und Wirklichkeit nach dem Nikolaus – Beschluss des BVerfG. Oncothermia Journal 2:41-49, https://oncotherm.com/sites/oncotherm/files/2017-07/Die_Erstattungsfahigkeit_hyperthermischer_behandlungen.pdf

[[145]]    Pang LKC. (2011) Status and Prospect on Contemporary Natural Medicine. Oncothermia Journal 3:35-38, https://oncotherm.com/sites/oncotherm/files/2017-07/Status_and_prospect_on_contemporary_natural_medicine.pdf

[[146]]    Gierthmühlen S. (2011) Die Abbildung komplementarer Therapien im deutschen Gesundheitssystem-Kostenübernahme durch GKV und PKV. Oncothermia Journal 4:16-19, https://oncotherm.com/sites/oncotherm/files/2017-07/Die_Abbildung_komplementarer_Therapien_im_deutschen.pdf

[[147]]    Breitkreutz F. (2011) Hyperthermie-Erstattung durch die GKV – Ein Überblick über die aktuelle Rechtsprechung anhand von vier Entscheidungen aus den Monaten August und September 2011. Oncothermia Journal 4:26-29, https://oncotherm.com/sites/oncotherm/files/2017-07/Hyperthermie-erstattung_durch_die_GKV_-_ein_uberblick.pdf

[[148]]    Krautkramer S. (2012) Neue Herausforderungen im Praxis- und Klinikmanagement: Prozessoptimierung durch echtes Factoring. Oncothermia Journal 5:67-71, https://oncotherm.com/sites/oncotherm/files/2017-07/Neue_herausforderungen_im_praxis-%20und_klinikmanagement.pdf

[[149]]    Breitkreutz F. (2012) Regionale Elektrohyperthermie: Ordnungsgemäße Abrechnung und Erstattungsfähigkeit. Oncothermia Journal 6:55-66 , https://oncotherm.com/sites/oncotherm/files/2017-07/Regionale_elektrohyperthermie_-_ordnungsgemasse_abrechnung_und_erstattungsfahigkeit.pdf

[[150]]   Herzog A. (2013) Lokale Hyperthermie wissenschaftliche und wirtschaftliche Aspekte und ihr Einfluss auf die Kostenübernahme durch die Krankenkasse Oncothermia Journal 9:47-53, https://oncotherm.com/sites/oncotherm/files/2017-07/Lokale_Hyperthermie_wissenschaftliche_und_wirtschaftliche_Aspekte.pdf

[[151]]    Breitkreutz F. (2013) Elektrohyperthermie: Erstattungfähingkeit und korrekte Abrechnung an aktuellen Beispielen aus der Rechtsprechung. Oncothermia Journal 9:39-39, https://oncotherm.com/sites/oncotherm/files/2017-07/Elektrohyperhtermie_Erstattungfahingkeit_und_korrekte_Abrechnung_an_aktuellen_Beispielen_aus_der_Rechtsprechung.pdf

[[152]]    Hegyi G, Vincze Gy, Szasz A. (2020) Thermodynamic description of living homeostasis, Chapter 10 in book New insights into physical science vol. 1, ed. Dr. Thomas F. George, Book Publisher International, pp. 1-13 http://www.bookpi.org/bookstore/product/new-insights-into-physical-science-vol-1/

[[153]]    Szasz O. (2020) Development in oncological hyperthermia, Chapter 11 in book New insights into physical science vol. 1, ed. Dr. Thomas F. George, Book Publisher International, pp. 1-13 http://www.bookpi.org/bookstore/product/new-insights-into-physical-science-vol-1/

[[154]]    Szasz A. (2020) Challenges and solutions of oncological hyperthermia, , Cambridge Scholars Publishing, ISBN-13: 978-5275-4817-6, https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia

[[155]]  Szasz A. (2013) Electromagnetic effects in nanoscale range. Cellular Response to Physical Stress and Therapeutic Applications (eds. Tadamichi Shimizu, Takashi Kondo), chapter 4. Nova Science Publishers, Inc

[[156]]   Pang CLK. (2015) Hyperthermia in oncology, CRC Press, https://www.crcpress.com/Hyperthermia-in-Oncology/Pang/p/book/9781498714464

[[157]]    Szasz A, Morita T. (2012) Heat Therapy in oncology, New paradigm in Hyperthermia. Nippon Hvoronsha, Tokyo, Japan

[[158]]   Szasz A, Iluri N, Szasz O. (2013) Local hyperthermia in Oncology – To Choose or not to Choose? A chapter in book: Hyperthermia, Ed: Huilgol N, ISBN 980-953-307-019-8, InTech, Ch.1. pp.1-82; http://www.intechopen.com/books/hyperthermia/local-hyperthermia-in-oncology-to-choose-or-not-to-choose-

[[159]]   Szasz A, Szasz N, Szasz O. (2010) Oncothermia – Principles and practices. Springer Science, Heidelberg, http://www.springer.com/gp/book/9789048194971

[[160]]   Szasz A, Szasz O, Szasz N. (2006) Physical background and technical realization of hyperthermia. In: Baronzio GF, Hager ED (eds) Hyperthermia in Cancer Treatment: A primer, Ch. 3., Springer, New York, NY, pp 27–59

[[161]]    Szasz A. (2015) Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia. In: Paul J. Rosch (ed) Bioelectromagnetic and subtle energy medicine, pp. 323-336, CRC Press, Taylor & Francis Group

[[162]]    Lee D, Szasz A. (2016) Heat therapy in oncology, New paradigm in electro-hyperthermia, Kim Jei Min Publishing, ISBN: 979-11-958291-0-1 13510

[[163]]    Chi K-H. (2019) Rescuing your own cancer: changing the microenvironment of the tumor to overcome cancer with self-healing, Times Publishing

[[164]]    Vancsik T. (2020) Mechanism of modulated electro-hyperthermia induced tumor destruction in C26 colorectal cancer models, Semmelweis University, Doctoral School of Pathological Sciences, PhD thesis, https://doktori.hu/index.php?menuid=193&lang=HU&vid=21105

[[165]]   Lim EJ. (2016) Developments into electromagnetic stimulation of neural cells, The University of Sydney, thesis

[[166]]   Szasz N. (2003) Electric field regulation of chondrocyte proliferation, biosynthesis, and cellular signaling, Massachusetts Institute of Technology, thesis

[[167]]    Fioravanti M. (2013-14) Studio dei meccanismi fisiopatologici dell’ipertermia oncologica e dell’oncothermia, Alma Mater Studiorum-Universita’ Di Bologna, thesis, https://amslaurea.unibo.it/7878/

[[168]]   Meggyeshazi N. (2015) Studies on modulated electrohyperthermia induced tumor cell death in a colorectal carcinoma model, Pathological Sciences Doctoral School, Semmelweis University, thesis, http://repo.lib.semmelweis.hu/handle/123456789/3956

[[169]]   Andocs G. (2015) Preclinical investigation on the biological effects of modulated electro-hyperthermia, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, thesis

[[170]]    Szasz A, Vincze Gy. (2006) Dose concept of oncological hyperthermia: Heat-equation considering the cell destruction. J Cancer Res Ther 2(4):171–181, http://www.ncbi.nlm.nih.gov/pubmed/17998700

[[171]]     Szasz A. (2007) Hyperthermia, a Modality in the Wings. J Cancer Res Ther 3(1):56–66, http://www.ncbi.nlm.nih.gov/pubmed/17998724

[[172]]    Szasz O, Szasz A. (2016) Heating, efficacy and dose of local hyperthermia. Open Journal of Biophysics, 6:10-18, http://www.scirp.org/journal/PaperInformation.aspx?paperID=62874

[[173]]    Vincze Gy, Szasz O, Szasz A. (2015) Generalization of the thermal dose of hyperthermia in oncology, Open Journal of Biophysics 5(4):97-114, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=60654

[[174]]    Vincze Gy, Szasz A. (2015) Critical analysis of the thermodynamics of reaction kinetics. Journal of Advances in Physics 10(1):2538-2559, https://cirworld.com/index.php/jap/article/view/1340

[[175]]    Szasz O, Szigeti GyP, Szasz A. (2016) Connections between the specific absorption rate and the local temperature. Open Journal of Biophysics 6:53-74; http://file.scirp.org/pdf/OJBIPHY_2016063014260548.pdf

[[176]]  Szasz O, Szigeti GyP, Vancsik T, Szasz A. (2018) Hyperthermia dosing and depth of effect, Open Journal of Biophysics, 2018, 8, 31-48, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=81896

[[177]]    Lee S-Y, Szigeti GP, Szasz AM. (2019) Oncological hyperthermia: The correct dosing in clinical applications, Int. J. Oncology, 54: 627-643, https://www.spandidos-publications.com/10.3892/ijo.2018.4645#

[[178]]    Orczy- Timko B. (2018): Performance comparison of electro-hyperthermia devices: EHY-2000plus and EHY-2030; Oncothermia Journal 24:333-343 , https://oncotherm.com/sites/oncotherm/files/2018-10/Performance_comparison.pdf

[[179]]    Szasz O. (2019): Efficacy and dose of local hyperthermia, Oncothermia Journal 27: 29- 41 https://oncotherm.com/sites/oncotherm/files/2020-02/Efficacy_and_dose_of_local_hyperthermia.pdf

[[180]]   Hegyi G, Vincze Gy, Szasz A. (2012) On the Dynamic Equilibrium in Homeostasis. Open Journal of Biophysics 2:64-71, http://file.scirp.org/pdf/OJBIPHY20120300001_81525786.pdf

[[181]]    Szasz A, Szendro P, Vincze Gy, et al. (2007) Study of the oxygen mass transfer in a gas-dispersing apparatus. Hungarian Agricultural Engineering &: 23-25

[[182]]    Szasz O, Szigeti GyP, Szasz A. (2017) On the self-similarity in biologyical processes, OJBIPHY, 7(4):183-196, http://file.scirp.org/pdf/OJBIPHY_2017090715550515.pdf

[[183]]    Szasz O, Szigeti GP, Szasz A. (2019) The intrinsic self-time of biosystems, OJBIPHY, 9, 131-145, https://file.scirp.org/pdf/OJBIPHY_2019040815291683.pdf

[[184]]    Vincze Gy, Szigeti GyP, Szasz O. (2016) Negative impedance interval of blood flow in capillary bed. Journal of Advances in Physics, 11(6):3482-3487, https://cirworld.com/index.php/jap/article/view/365

[[185]]   Vincze Gy, Szigeti GyP, Szasz O. (2016) Non-Newtonian analysis of blood-flow. Journal of Advances in Physics, 11(6):3470-3481, https://cirworld.com/index.php/jap/article/view/6834

[[186]]   Szasz A, Szasz O, Szasz N. (2001) Hyperthermic radiology. Why to combine? Strahlentherapie und Onkologie 177:110-110, http://real.mtak.hu/6605/

[[187]]    Szasz A, Szasz O, Vincze Gy, et al. (2009) Non-Mechanical Energy Transfer of Electrically Neutral Electrolytes. Mechanical Enginnering Letters 3:180-187

[[188]]   Zaffaroni N, Fiorentini G, De Giorgi U. (2001) Hyperthermia and hypoxia: new developments in anticancer chemotherapy; Eur J Surg Oncol 27:340-342, http://www.ncbi.nlm.nih.gov/pubmed/11417976

[[189]]   Szasz O. (2019) Bioelectromagnetic paradigm of cancer treatment – Modulated electro-hyperthermia (mEHT), OJBIPHY,  9, 98-109, https://file.scirp.org/pdf/OJBIPHY_2019022616103729.pdf

[[190]]   Szasz A, Vincze Gy, Andocs G, Szasz O. (2009) Do Field-Free Electromagnetic Potentials Play a Role in Biology?. Electromagn Biol Med 28(2):135–147, http://www.ncbi.nlm.nih.gov/pubmed/19811396

[[191]]    Andocs G, Vincze Gy, Szasz O, Szendro P, Szasz A. (2009) Effect of Curl-Free Potentials on Water. I Electromagn Biol Med 28(2):166–181, http://www.ncbi.nlm.nih.gov/pubmed/19811398

[[192]]    Hegyi G, Vincze Gy, Szasz A. (2007) Axial vector interaction with bio-systems. Electr Biol Med 26(2):107–118, http://www.ncbi.nlm.nih.gov/pubmed/17613038

[[193]]    Szasz A. (2014) Oncothermia: Complex therapy by EM and fractal physiology, XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), IEEE Xplore 20 October 2014, DOI: 10.1109/URSIGASS.2014.6930100, https://ieeexplore.ieee.org/document/6930100

[[194]]    Vincze Gy, Szasz A, Szasz N. (2005) On the thermal noise limit of cellular membranes. Bioelectromagnetics 26(1):28–35, http://www.ncbi.nlm.nih.gov/pubmed/15605404

[[195]]   Szasz O, Szigeti GyP, Szasz A, Benyo Z. (2018) Role of electrical forces in angiogenesis, OJBIPHY, 8, 49-67

[[196]]   Vincze Gy, Szasz A. (2015) Reorganization of actin filaments and microtubules by outside electric field, Journal of Advances in Biology 8(1):1514-1518

[[197]]    Szendro P, Szasz A. (2005) Bioelectromagnetic interactions in agriculture: Controversial positions. Bulletin of the Szent István University - Gödöllő 2:173-206

[[198]]   Szasz N, Szasz O. (2005) Device and procedure for measuring and examining the signal of systems releasing measurable signal during operation or in response to external excitation. Forum Komplementaire Onkologie 4:3-9

[[199]]   Szendro P, Koltay J, Vincze Gy, Szasz A, et al. (1999) Industrial device for stimulating seeds. Hungarian Agricultural Engineering 12:51-52

[[200]]  Szendro P, Koltay J, Szasz A et al. (1999) Is the structure of the water convertible in physical way? Hungarian Agricultural Engineering 12:43-45

[[201]]   Szendro P, Koltay J, Vincze Gy, Szasz A, et al. (1999) Üzemi berendezés vetőmagvak stimulációjára. Mezőgazdasági Technika 40:(9)10-12

[[202]]   Szasz O, Szigeti GyP, Szasz AM. (2017) Electrokinetics of temperature for development and treatment of effusions, Advances in Bioscience and Biotechnology, 8:434-449, https://www.scirp.org/journal/PaperInformation.aspx?PaperID=80707

[[203]]   Vincze Gy, Szasz A, Liboff AR. (2008) New Theoretical Treatment of Ion Resonance Biological Phenomena. Bioelectromagnetics 29(5):380-386, http://www.ncbi.nlm.nih.gov/pubmed/18288680

[[204]]   Szasz A, Vincze Gy, Szasz O, Szasz N. (2003) An energy analysis of extracellular hyperthermia. Magneto- and electro-biology 22(2):103–115, http://www.tandfonline.com/doi/abs/10.1081/JBC-120024620

[[205]]  Szasz A, D van Noort, Scheller A, et al. (1994) Water states in living systems. I. Structural aspects, Physiol. Chem. Phys. 26(4), 299–322, http://www.ncbi.nlm.nih.gov/pubmed/7700980

[[206]]  Vincze Gy, Szasz A. (2015) Effect of cellular membrane resistivity inhomogeneity on the thermal noise-limit, Journal of Advances in Physics, Vol. 11, No. 4, 3170-3183, http://paper.researchbib.com/view/paper/76617

[[207]]   Vincze Gy, Szendro P, Szasz A, et al. (2003) Heat penetration into the cell wall. Acta Technologica Agriculturae 6:(3)68-72

[[208]]  Szendro P, Vincze Gy, Szasz A. (1999) Response of bio-systems on white noise excitation. Hungarian Agricultural Engineering 12:31-32

[[209]]  Szendro P, Vincze Gy, Szasz A. (1998) Origin of pink-noise in bio-systems. Hungarian Agricultural Engineering 11: 42-43

[[210]]   Wust P, Nadobny J, Zschaeck S, Ghadjar P. (2020) Physics of hyperthermia – Is physics really against us?, in book Challenges and solutions of oncological hyperthermia, ed. Szasz A., Ch. 16, pp.346-376, Cambridge Scholars, https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia

[[211]]     Szasz A, Szasz O. (2020) Time-fractal modulation of modulated electro-hyperthermia (mEHT), in book Challenges and solutions of oncological hyperthermia, ed. Szasz A., Ch. 17, pp.377-415, Cambridge Scholars, https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia

[[212]]    Ferenczy GL, Szasz A. (2020) Technical challenges and proposals in oncological hyperthermia, in book Challenges and solutions of oncological hyperthermia, ed. Szasz A., Ch. 3, pp.72-90, Cambridge Scholars,https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia

[[213]]    Szasz A, Szasz O. (2018): Time-fractal modulation of modulated electro-hyperthermia (mEHT) Oncothermia Journal 24:318-332, https://oncotherm.com/sites/oncotherm/files/2018-10/Time_fractal_modulation.pdf

[[214]]    Dank M, Meggyeshazi N, Szigeti Gy, Andocs G. (2016) Immune effects by selective heating of membrane rafts of cancer-cells, ASCO Annual Meeting, abstr: e14571, https://meetinglibrary.asco.org/record/124231/abstract

[[215]]    Szasz O, Andocs G, Kondo T, et.al. (2015) Heating of membrane raft of cancer-cells, ASCO Annual Meeting, J Clin Oncol 33, (suppl, abstr e22176), http://meetinglibrary.asco.org/content/151213-156

[[216]]    Vincze Gy, Szigeti Gy, Andocs G, Szasz A. (2015) Nanoheating without Artificial Nanoparticles, Biology and Medicine 7(4):249, http://www.omicsonline.com/open-access/nanoheating-without-artificial-nanoparticles-0974-8369-1000249.php?aid=61783

[[217]]    Szasz A. (2013) Electromagnetic effects in nanoscale range. Cellular Response to Physical Stress and Therapeutic Applications (eds. Tadamichi Shimizu, Takashi Kondo), chapter 4. Nova Science Publishers, Inc

[[218]]    Szasz O, Szasz A.M. Minnaar C, Szasz A. (2017) Heating preciosity - trends in modern oncological hyperthermia. Open Journal of Biophysics 7:116-144, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=77458

[[219]]    Papp E, Vancsik T, Kiss E, Szasz O. (2017) Energy absorption by the membrane rafts in the modulated electro-hyperthermia (mEHT), Open Journal of Biophysics, 7, 216-229, https://file.scirp.org/pdf/OJBIPHY_2017102715065328.pdf

[[220]]   Zsoldos I, Szendro P, Watson L, Szasz A. (2001) Topological Correlation in amorphous structures. Comp Mater Sci 20(1):28–36, http://www.sciencedirect.com/science/article/pii/S0927025600001208

[[221]]    Zsoldos I, Szasz A. (1999) Appearance of collectivity in two-dimensional cellular structures. Comp Material Science 15(4):441–448, http://www.sciencedirect.com/science/article/pii/S0927025699000312

[[222]]   Zsoldos I, Szasz A. (1999) From Random Cellular Structure to the Honeycomb Pattern. J Hungarian Agricultural Research 3:9-11

[[223]]   Zsoldos I, Szasz A. (1999) From two dimensional cellular structures to the honeycomb pattern. Hungarian Agricultural Research 3:9-14

[[224]]   Zsoldos I, Szasz A. (1999) Háromdimenziós sejtrendszerek topológiai összefüggései. Gépgyártástechnológia 1:27-35, http://real.mtak.hu/6576/

[[225]]   Zsoldos I, Janik J, Szasz A. (1999) Topological aspects of ordering: Proceeding of the 7th Seminar of IFHT Heat Treatment Surface Engineering of Light Alloys. Engineering of Light Alloys pp. 343-343.

[[226]]   Szigeti GP, Szasz O, Hegyi G. (2017) Connections between Warburg’s and Szentgyorgyi’s Approach about the Causes of Cancer. Journal of Neoplasm 1(2:8):1-13; http://neoplasm.imedpub.com/connections-between-warburgs-and-szentgyorgyis-approach-about-thecauses-of-cancer.pdf

[[227]]   Vincze Gy, Sziget GyP, Szasz A. (2016) Reorganization of the cytoskeleton. Journal of Advances in Biology 9(2):1872-1882; https://cirworld.com/index.php/jab/article/view/4059

[[228]]   Saupe H, Szigeti GyP, Andocs G. (2016) Why modulated electrohyperthermia (mEHT) destroys the rouleaux formation of erythrocytes? Journal of Advances in Biology 9(3):1945-1955; http://paper.researchbib.com/view/paper/111077

[[229]]   Andocs G, Meggyeshazi N, Okamoto Y, Balogh L, Szasz O. (2013) Bystander Effect of Oncothermia. Hindawi Publishing Corporation Conference Papers in medicine, Volume 2013, Article ID 953482; http://www.hindawi.com/archive/2013/953482/

[[230]]   Vincze Gy, Zsoldos I, Szasz A. (2004) On the Aboav-Weaire law. J Geomet Phys 51(1):1–12, http://www.sciencedirect.com/science/article/pii/S0393044003001335

[[231]]    Szasz A. (1990) A short-range electronic instability in high Tc superconductors. In: Zipper E, Manka R, Maska M (eds) Strongly Correlated Electron systems & High-Tc superconductivity, World Scientific, Singapore, pp. 168-245, http://real.mtak.hu/6365/

[[232]]   Maryan M, Szasz A, Szendro P, et al. (2005) Synergetic model of the formation of non-crystalline structures. Journal of Non-Crystalline Solids 351(2):189–193; http://www.sciencedirect.com/science/article/pii/S002230930400897X

[[233]]   Zsoldos I, Reti T, Szasz A. (2004) On the topology of 2D polygonal and generalized cell systems. Computational Materials Science 29:119-130; http://www.sciencedirect.com/science/article/pii/S0927025603001800

[[234]]   Szasz A. (1991) Electronically Driven Short-Range Lattice Instability: Possible Role in Superconductive Pairing. Journal of Superconductivity 4(1):3-15; https://link.springer.com/article/10.1007/BF00618292

[[235]]   Szasz A, Kertesz L, Aysawy MA, et al. (1991) Correlation between the structural and electronic stability factors. Journal of Non-Crystalline Solids 130:211-216; http://www.sciencedirect.com/science/article/pii/002230939190457H

[[236]]   Pan X, Szasz A, Fabian DJ. (1989) Fractal models for the autocatalytic growth of amorphous thin films. Journal of Applied Physics 66:146-151; http://aip.scitation.org/doi/abs/10.1063/1.343894

[[237]]   Szasz A, Fabian DJ, Janosi IM. (1989) Close-packed Frank-Kasper coordination and high critical temperature superconductivity. Periodica Polytechnica-Chemical Engineering 34(1-3):163-171; http://www.pp.bme.hu/ch/article/viewFile/2720/1825

[[238]]   Szasz A, Fabian DJ. (1988) On electronic structure and metastability. Solid State Communications 65(10):1085-1088; http://real.mtak.hu/6320/

[[239]]   Szasz A, Fabian DJ. (1988) Correlation of metastability, icosahedral symmetry and high-critical-temperature superconductivity. Physica C - Superconductivity and Its Applications 153-155:1205-1206; http://www.sciencedirect.com/science/article/pii/0921453488902432

[[240]]   Szasz A. (1987) The exact solution of the real square-lattice-gas system. Physica Status Solidi 140:415-420; http://real.mtak.hu/6317/1/1183025.pdf

[[241]]    Demidenko VS, Szasz A, Aysawi MA. (1987) On the model calculation of the excitonic-like states and their possible role in autocatalytic processes. Physica Status Solidi 140:121-126; http://onlinelibrary.wiley.com/doi/10.1002/pssb.2221400112/abstract

[[242]]   Szasz A. (1985) One possible analytical approximation of the critical point of the three-dimensional ising model. Physica Status Solidi 130(2):K97-K100; http://onlinelibrary.wiley.com/doi/10.1002/pssb.2221300250/abstract

[[243]]   Batirev IG, Katsnelson AA, Kertesz L, Szasz A. (1980) Coherent potential approximation of the relationship between short-range order and the position of the fermi level on the state density curves. Physica Status Solidi 100:479-485; http://onlinelibrary.wiley.com/doi/10.1002/pssb.2221000212/abstract

[[244]]  Szasz O, Vincze Gy, Szigeti GyP, Szasz A. (2017) Intrinsic Noise Monitoring of Complex Systems, OJBIPHY, 7, 197-215, http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=79028

[[245]]   Marjan M, Kikineshi A, Szendro P, Szasz A. (2001) Modelling of the dissipative structure of water. Acta Technologica Agriculturae 4:(3)77-80

[[246]]   Maryan M, Kurik M, Kikineshy A, Watson LM, Szasz A. (1999) A synergetic representation for the double-structure model of liquid water. Ukrainskii Fizicheskii Zhurnal 44:1227-1232, http://real.mtak.hu/6591/

[[247]]   Maryan M, Kurik M, Kikineshy A, Watson LM, Szasz A. (1999) Two-structure model of liquid water. Modelling and Simulation in Materials Science and Engineering 7:321-331, http://real.mtak.hu/6575/

[[248]]   Maryan MI, Kikineshi AA, Szasz A. (2001) Self-organizing processes and dissipative structure formation in the non-crystalline materials. Phys Chem Stat Sol 2(4):585–593,

[[249]]   Szasz O, Andocs G, Meggyeshazi N. (2013) Oncothermia as personalized treatment option. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 2941364, http://www.hindawi.com/archive/2013/941364/

[[250]] Vincze Gy, Szasz A. (2016) Notes on psychophysics. Journal of Advances in Biology 9(1):1756-1760; https://rajpub.com/index.php/jab/article/view/4400

[[251]]    Szasz O, Szasz A. (2016) Considering skin physiology in capacitive-coupled hyperthermia. Journal of Advances in Physics 11(9):3966-3972; https://cirworld.com/index.php/jap/article/view/206

[[252]]   Hegyi G, Bingsheng H, Ji’an L, Szasz O, Szasz A. (2012) Oncothermia and traditional Chinese medicine. Oncothermia Journal 5:77-93,  https://oncotherm.com/sites/oncotherm/files/2017-07/Oncothermia_and_traditional_Chinese_medicine.pdf

[[253]]   Douwes FR. (2012) Is an Integrative Cancer Therapy Concept (ICTC) the answer to improve the present situation in cancer care? Oncothermia Journal 6:27-32, https://oncotherm.com/sites/oncotherm/files/2017-07/Is_an_integrative_cancer_therapy_concept_%28ICTC%29_the_answer.pdf

[[254]]   Pang CLK. (2013) Progress of research of hyperthermia integration with TCM in the treatment of cancer. Oncothermia Journal 7:36-42, https://oncotherm.com/sites/oncotherm/files/2017-07/Progress_of_research_of_hyperthermia_integration_with_TCM_in_the_treatment_of_cancer.pdf

[[255]]   Szendro P, Vincze G, Szasz A. (2001) Pink noise behaviour of the bio-systems. Eur Biophys J 30(3):227–231, http://www.ncbi.nlm.nih.gov/pubmed/11508842

[[256]]   Szendro P, Vincze G, Szasz A. (2001) Bio-response to White Noise Excitation. Electro- and Magnetobiology 20(2):215-229, http://www.tandfonline.com/doi/abs/10.1081/JBC-100104145?journalCode=iebm19

[[257]]  Szasz A, Vincze Gy, Szigeti Gy, Szasz O. (2017) Internal charge redistribution and currents in cancerous lesions, J Adv in Biology, 10(2):2061-2079, http://cirworld.com/index.php/jab/article/view/6328/6283

[[258]]   Szasz A. (1991) An electrically driven instability: the living-state (Does the room temperature superconductivity exist?). Physiol Chem Phys Med NMR 23:43–50, http://real.mtak.hu/6379/1/1184363.pdf

[[259]]   Szasz O, Szasz AM, Szigeti GP, Szasz A. (2020) Data mining and evaluation of single arm clinical studies, Chapter 2 in book Recent developments in engineering research Vol. 3. Ed. by Dr. Yong X. Gan, pp. 15-74, http://www.bookpi.org/bookstore/product/recent-developments-in-engineering-research-vol-3/

[[260]] Szasz O, Szasz A. (2020) Parametrization of survival measures, Part I: Consequences of self-organizing, Int J Clinical Medicine, 11, 316-347, https://www.scirp.org/journal/paperinformation.aspx?paperid=100454

[[261]]    Szasz A, Szigeti GyP, Szasz AM. (2020) Parametrization of survival measures, Part II: Single arm studies, Int J Clinical Medicine, 11, 348-373, https://www.scirp.org/journal/paperinformation.aspx?paperid=100456

[[262]]   Szasz A, Szigeti GyP, Szasz AM. (2020) Parametrization of survival measures, Part III: Clinical evidences in single arm studies with endpoint of overall survival, Int J. Clinical Medicine, 11, 389-419, https://www.scirp.org/journal/paperabs.aspx?paperid=100784

[[263]]   Szasz A. (2019): Evaluation of clinical studies when no reference arm exists, Oncothermia Journal 27: 174- 187 www.oncotherm.com/sites/oncotherm/files/2019-10/Evaluation_of_clinical_studies.pdf

[[264]]   Vincze Gy, Szasz A. (2019) New look at an old principle: An alternative formulation of the theorem of minimum entropy production, J. Adv. Physics, 16:508-517, https://rajpub.com/index.php/jap/article/view/8516

[[265]]  Vincze Gy, Szigeti GyP, Szasz A. (2018) On the Feynman ratchet and the Brownian motor, Open Journal of Biophysics, 2018, 2, 22-30, https://file.scirp.org/pdf/OJBIPHY_2018010914452588.pdf

[[266]]   Vincze Gy, Szasz A. (2011) On the extremum properties of thermodynamic steady state in non-linear systems. In Book: Thermodynamics - Interaction Studies - Solids, Liquids and Gases, InTech, Vienna, Austria, http://www.intechopen.com/books/thermodynamics-physical-chemistry-of-aqueous-systems/on-the-extremum-properties-of-thermodynamic-steady-state-in-non-linear-systems

[[267]]   Vincze Gy, Szasz A. (2016) Onsagerian quantum mechanics. Journal of Advances in Physics, 11(6):3353-3373, https://cirworld.com/index.php/jap/article/view/349

[[268]]   Vincze Gy, Szasz A. (2015) Nonequilibrium thermodynamic and quantum model of a damped oscillator. In: Mofid Gorji-Bandpy (ed) Recent advances in thermo and fluid dynamics. Chapter 3, In Tech, http://www.intechopen.com/books/recent-advances-in-thermo-and-fluid-dynamics/nonequilibrium-thermodynamic-and-quantum-model-of-a-damped-oscillator

[[269]]   Vincze Gy, Szasz A. (2014) Rosen-Chambers variation theory of linearly-damped classic and quantum oscillator. Journal of Advances in Physics 4(1):405-426, https://rajpub.com/index.php/jap/article/view/6966

[[270]]   Joo E, Szasz A, Szendro P. (2005) A mobiltelefonokból származó elektromágneses expozíció alakulása 900/1800/2100 MHz frekvencián. Munkavédelem és Biztonságtechnika 17:(1)44-50

[[271]]    Joo E, Szendro P, Vincze Gy, Szasz A. (2004) Assessment of electromagnetically treated wheat kernel at 120Hz using the FDTD method. Acta Technologica Agriculturae 7:101-105

[[272]]   Joo E, Szasz A, Szendro P. (2006) Metal-framed spectacles and implants and specific absorption rate among adults and children using mobile phones at 900/1800/2100 MHz. Electromagn Biol Med 25(2):103–112, http://www.ncbi.nlm.nih.gov/pubmed/16771299

[[273]]   Szasz A (2020) Towards the Immunogenic Hyperthermic Action: Modulated ElectroHyperthermia, DOI: 10.31487/j.COR.2020.09.07

[[274]]   Szigeti GYP, Szasz AM, Szasz O (2020) Oncothermia is a kind of oncological hyperthermia – a review, Oncothermia Journal Special Edition, 2020 September: 8-48. www.oncotherm.com/sites/oncotherm/files/2020-09/specialedition01.pdf

[[275]]   Minnaar CA, Szasz AM, Arrojo E et al. (2020) Summary and update of the method modulated electrohyperthermia, Oncothermia Journal Special Edition, 2020 September, 49-130. www.oncotherm.com/sites/oncotherm/files/2020-09/specialedition02.pdf

[[276]]   Danics L, Schvarz Cs, Viana P, Vancsik T, et al. (2020) Exhaustion of Protective Heat Shock Response Induces Significant Tumor Damage by Apoptosis after Modulated Electro-Hyperthermia Treatment of Triple Negative Breast Cancer Isografts in Mice, DOI: 10.3390/cancers12092581

[[277]]   Girolamo Ranieri, Carmelo Laface, Mariarita Laforgia et al. (2020) Bevacizumab Plus FOLFOX-4 Combined With Deep Electro-Hyperthermia as First-line Therapy in Metastatic Colon Cancer: A Pilot Study, https://www.frontiersin.org/articles/10.3389/fonc.2020.590707/full

[[278]]   Szigeti GYP, Szász AM, Szasz A (2020) The Growth of Healthy and Cancerous Tissues, https://www.scirp.org/journal/paperinformation.aspx?paperid=100774 

[[279]]   Csaba András Schvarcz, Lea Danics, Tibor Krenács, Pedro Viana, Rita Béres, Tamás Vancsik, Ákos Nagy, Attila Gyenesei, József Kun, Marko Fonović, Robert Vidmar, Zoltán Benyó, Tamás Kaucsár and Péter Hamar. (2021) Modulated Electro‐Hyperthermia Induces a Prominent Local Stress Response and Growth Inhibition in Mouse Breast Cancer Isografts, https://doi.org/10.3390/cancers13071744 

[[280]]   Andras Szasz. (2021) Therapeutic Basis of Electromagnetic Resonances and Signal-Modulation, https://doi.org/10.4236/ojbiphy.2021.113011

[[281]]    Andras Szasz. (2021) The Capacitive Coupling Modalities for Oncological Hyperthermia, https://doi.org/10.4236/ojbiphy.2021.113010

[[282]]   Andras Szasz. (2021) Vascular Fractality and Alimentation of Cancer https://doi.org/10.4236/ijcm.2021.127025

[[283]]  Andras Szasz. (2021) Allometric Scaling by the Length of the Circulatory Network https://doi.org/10.4236/ojbiphy.2021.114013

[[284]]  Wust P, Stein U, Ghadjar P. (2021) Non-thermal membrane effects of electromagnetic fields and therapeutic applications in oncology, Int. J. Hyperthermia, 38(1):715-731. https://doi.org/10.1080/02656736.2021.1914354

[[285]]  Szasz A. (2021) Bio-electromagnetics without fields: The effect of the vector potential, OJBIPHY, 11, 205-224. https://doi.org/10.4236/ojbiphy.2021.112007

[[286]] Bibin Prasad, You Ho Ha, Seung Ku Lee, Jung Kyung Kim3 (2016) Patient-specific simulation for selective liver tumor treatment with noninvasive radiofrequency hyperthermia DOI: 10.1007/s12206-016-1154-x

[[287]] Szasz A. (2021) Time-Fractal Modulation—Possible Modulation Effects in Human Therapy, OJBIPHY, 12, 38-87.  doi: 10.4236/ojbiphy.2022.121003

[[288]] Szasz A. (2021) Time-Fractal in Living Objects, OJBIPHY, 12, 1-26. doi: 10.4236/ojbiphy.2022.121001

[[289]] Priester, M.I.; Curto, S.; van Rhoon, G.C.; ten Hagen, T.L.M. External Basic Hyperthermia Devices for Preclinical Studies in Small Animals. Cancers 2021, 13, 4628. DOI: 10.3390/cancers13184628 

[[290]] Szasz A. (2022) Heterogeneous Heat Absorption Is Complementary to Radiotherapy, Cancers 202214, 901. DOI: 10.3390/cancers14040901

[[291]] Szasz, A. (2022) Stimulation and Control of Homeostasis, Open Journal of Biophysics , 12, 89-131.  doi: doi.org/10.4236/ojbiphy.2022.122004

[[292]] Szasz, A. (2022) Forcing the Antitumor Effects of HSPs Using a Modulated Electric Field, Cells , 11, doi: https://doi.org/10.3390/cells11111838

[[293]] Kuo I-M, Lee J-J, Wang Y-S, et al. (2020) Potential enhancement of host immunity and anti-tumor efficacy of nanoscale curcumin and resveratrol in colorectal cancers by modulated electro-hyperthermia, BMC Cancer, 20:603, doi: https://doi.org/10.1186/s12885-020-07072-0

[[294]] Minnaar, C.A., Szasz, A., Lee, S.Y., Szigeti, G.P., Szasz, A.M. and Mathe, D. (2022) Supportive and Palliative Care in Cancer Therapies—Path from Tumor-Driven Therapies to Patient-Driven Ones. International Journal of Clinical Medicine, 13, 287-359, doi: https://doi.org/10.4236/ijcm.2022.137024

[[295]] Hyunkyung, K., Dohyeon, K., Wonwoo, K., EunJi, K., Won, I.J. and Mi-Soo, K. (2022) The Efficacy of Radiation is Enhanced by Metformin and Hyperthermia Alone or Combined Against FSaII Fibrosarcoma in C3H Mice. Radtiation Research, 198, 190-199, doi: https://doi.org/10.1667/rade-21-00231.1

[[296]] Wust P, Veltsista PD, Oberacker E, Yavvari P, Walther W, Bengtsson O, et.al. (2022) Radiofrequency electromagnetic fields cause non-temperature-induced physical and biological effects in cancer cells, Cancers, 14, 5349. , doi: https://doi.org/10.3390/cancers14215349

Megszakítás