Add more content here...

Collection of experimental publications

Oncotherm is keen to prepare studies and publish those in relevant scientific and medical literature. Our philosophy covers a complex interation between the various levels of research and applications. The basic researches (theoretical considerations and in-silico studies) are followed by the laboratory experiments in-vitro and in-vivo completed with preclinical and afterwards clinical studies. All steps are interacting not only with the next forward, but could affect the previous research steps for corrections, modifications and further developments. This complex research scheme allows us being ready to absorb the latest results from the worldwide literature and making own development on the available top of the state-of-the-art. Herewith we demonstrate our actual results with our publications from the laboratories until the clinical applications. Many PubMed registered publications are in harmony with the topics whics are too technical or simple submitted to the not NCI registered publishers.

To be active for the training of our oncotherm community, we issue informative newsletters each month and we publish our Oncothermia Journal (ISSN 2191-6438) three times a year [[1]], sharing the hot topics in the oncothermia research field with our community members and with other interested researchers, too. There are quite a large number of publications in the journal which can be found on its website.

Oncothermia is the special method of Oncotherm Kft., became the trade-name of the treatment modality of modulated electro-hyperthermia (mEHT).

 

Experimental Publications

Apoptosis

    • Relationship between energy dosage and apoptotic cell death by modulated electro-hyperthermia [[1]],
    • Exhaustion of protective heat shock response induces significant tumor damage by apoptosis after modulated electro-hyperthermia treatment of triple negative breast cancer isografts in mice [[2]],
    • Modulated electro-hyperthermia-induced tumor damage mechanisms revealed in cancer models [[3]],
    • Modulated electro-hyperthermia resolves radioresistance of Panc1 pancreas adenocarcinoma and promotes DNA damage and apoptosis in vitro [[4]],
    • Elevated apoptosis and tumor stem cell destruction in a radioresistant pancreatic adenocarcinoma cell line when radiotherapy is combined with modulated electro-hyperthermia [[5]],
    • A modulált elektrohipertermia (mEHT) indukálta tumorkárosodás mechanizmusa kolorektális karcinóma modellben (Mechanism of action of modulated electro-hyperthermia (mEHT) induced tumor damage in colorectal adenocarcinoma models) [[6]],
    • The presence of gold nanoparticles in cells associated with the cell-killing effect of modulated electro-hyperthermia [[7]],
    • Electro-hyperthermia up-regulates tumour suppressor Septin 4 to induce apoptotic cell death in hepatocellular carcinoma [[8]],
    • Electro-hyperthermia inhibits glioma tumorigenicity through the induction of E2F1-mediated apoptosis [[9]],
    • DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia [[10]],
    • Upregulation of heat shock proteins and the promotion of damage-associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia [[11]],
    • Programmed cell death induced by modulated electro-hyperthermia [[12]],
    • Modulated electrohyperthermia causes caspase independent programmed cell death in HT29 colon cancer xenografts [[13]],
    • Modulated electro-hyperthermia induced programmed cell death in HT29 colorectal carcinoma xenograft [[14]],
    • DNA fragmentation-driven tumor cell degradation induced by modulated electro-hyperthermia [[15]],
    • A modulált rádiófrekvenciás (RF) hyperthermia (oncothermia) apoptózis-indukáló hatása immunhiányos egér xenograft tumorokban [The apoptosis-inducing effect of modulated radio-frequency (RF) hyperthermia (oncothermia) on immun deficient mouse xenograft tumors] [[16]],
    • Klinikai vizsgálatok és evidenciák a modulált vezetéses rádiófrekvenciás hyperthermia (oncothermia) alkalmazásában [Clinical trials and evidences of the application of modulated radio-frequency hyperthermia] [[17]],

 

Abscopal effect

    • Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil IIb: Weitere fallbezogene Darstellungen der abskopaltherapie [[18]],
    • Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil III: Literaturvergleich und Diskussion [[19]],
    • Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil I: Abskopaleffekte in der Onkologie, Vorwort und Einführung [[20]],
    • Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil IIa: Fallbezogene Abskopaltherapie mit provoziert radiogenem Abskopaleffekt entsprechend einer radiogenen autologin spezifischen Immuntherapie (RASI) [[21]],
    • Modulated electro-hyperthermia induced loco-regional and systemic tumor destruction in colorectal cancer allografts [[22]],
    • Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy [[23]],
    • Modulated electro-hyperthermia enhances dendritic cell therapy through an abscopal effect in mice [[24]],
    • Bystander effect of oncothermia [[25]],

 

Immune effects

    • Immunogenic Effect of Modulated Electro-hyperthermia (mEHT) in Solid Tumors [[26]],
    • Modulated electro-hyperthermia facilitates NK-cell infiltration and growth arrest of human A2058 melanoma in a xenograft model [[27]],
    • Potential enhancement of host immunity and anti-tumor efficacy of nanoscale curcumin and resveratrol in colorectal cancers by modulated electro-hyperthermia [[28]],
    • Towards the immunogenic hyperthermic action: Modulated electro-hyperthermia [[29]],
    • Stress-induced, p53-mediated tumor growth inhibition of melanoma by modulated electrohyperthermia in mouse models without major immunogenic effects [[30]],
    • Tumor specific stress and immune response induced by modulated electrohyperthermia in relation to tumor metabolic profiles [[31]],
    • Inhibition of proliferation, induction of apoptotic cell death and immune response by modulated electro-hyperthermia in C26 colorectal cancer allografts [[32]],
    • Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy [[33]],

 

Comparisons

    • External basic hyperthermia devices for preclinical studies in small animals [[34]],
    • In vitro comparison of conventional hyperthermia and modulated electro-hyperthermia [[35]],
    • Comparison of biological effects of modulated electro-hyperthermia and conventional heat treatment in human lymphoma U937 cells [[36]],

 

Radiotherapy combination

    • The efficacy of radiation is enhanced by Metformin and hyperthermia alone or combined against FSaII fibrosarcoma in C3H mice [[37]],
    • Radiotherapy in combination with hyperthermia suppresses lung cancer progression via increased NR4A3 and KLF11 expression [[38]],
    • Molecular basis of modulated electro-hyperthermia combination with radio- and chemo-therapies [[39]],
    • Quantitative estimation of the equivalent radiation dose escalation using radiofrequency hyperthermia in mouse xenograft models of human lung cancer [[40]],
    • First in vitro evidence of modulated electro-hyperthermia treatment performance in combination with megavoltage radiation by clonogenic assay [[41]],
    • Temperature mapping and thermal dose calculation in combined radiation therapy and 13.56 MHz radiofrequency hyperthermia for tumor treatment [[42]],

Chemotherapy combination

    • Modulated electro-hyperthermia induced p53 driven apoptosis and cell cycle arrest additively support doxorubicin chemotherapy of colorectal cancer in vitro [[43]],
    • Modulated electro-hyperthermia-enhanced liposomal drug uptake by cancer cells [[44]],

Veterinarian

    • Temperature increase induced by modulated electrohyperthermia (oncothermia®) in the anesthetized pig liver [[45]],
    • Oncothermia research at preclinical level [[46]],
    • Report of the pilot-study done for the proposed investigation on the possible synergic effect between high dose ascorbic acid application and oncothermia treatment [[47]],
    • Oncothermia basic research at in vivo level. The first results in Japan [[48]],
    • Diagnostic and therapeutic aspects of canine malignant melanoma. Part 2. Own experiences [[49]],

Temperature

    • Radiofrequency electromagnetic fields cause non-temperature-induced physical and biological effects in cancer cells [[50]],
    • Non-thermal membrane effects of electromagnetic fields and therapeutic applications in oncology [[51]],
    • Non-thermal effects of radiofrequency electromagnetic fields [[52]],
    • Phantom measurements with the EHY-2030 device [[53]],
    • Iron-dextran as a thermosensitizer in radiofrequency hyperthermia for cancer treatment [[54]],
    • Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia [[55]],
    • Transferrin as a thermosensitizer in radiofrequency hyperthermia for cancer treatment [[56]],
    • Simulation and experimental evaluation of selective heating characteristics of 13.56 MHz radiofrequency hyperthermia in phantom models [[57]],
    • Deep temperature measurements in oncothermia processes [[58]],
    • Temperature measurements during Oncothermia (Collection of temperature measurements in loco regional hyperthermia) [[59]],
    • The role and measurement of temperature in oncothermia [[60]],
    • Strong synergy of heat and modulated electro-magnetic field in tumor cell killing, Study of HT29 xenograft tumors in a nude mice model [[61]],
    • Messung der Temperaturverteilung am Modell der nicht perfundierten Schweineleber bei lokaler Hyperthermie mit Kurzwellen mit 13,56 MHz [[62]],

Modulation

    • Therapeutic basis of electromagnetic resonances and signal-modulation [[63]],
    • Physical analysis of temperature-dependent effects of amplitude-modulated electromagnetic hyperthermia [[64]],
    • Physical potentials of radiofrequency hyperthermia with amplitude modulation [[65]],
    • Similarities of modulation by temperature and by electric field [[66]],
    • Modulation effect in oncothermia [[67]],

Mixed molecular biology

    • Modulated electro-hyperthermia accelerates tumor delivery and improves anticancer activity of Doxorubicin encapsulated in lyso-thermosensitive liposomes in 4T1-tumor-bearing mice [[68]],
    • Heat shock factor 1 inhibition enhances the effects of modulated electro hyperthermia in a triple negative breast cancer mouse model [[69]],
    • Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer [[70]],
    • Desensitization of Capsaicin-sensitive afferents accelerates early tumor growth via increased vascular leakage in a murine model of triple negative breast cancer [[71]],
    • Modulated electro-hyperthermia induces a prominent local stress response and growth inhibition in mouse breast cancer isografts [[72]],
    • Supplementary materials: Modulated electro-hyperthermia induces a prominent local stress response and growth inhibition in mouse breast cancer isografts [[73]],
    • Suppression of metastatic melanoma growth in lung by modulated electro-hyperthermia monitored by a minimally invasive heat stress testing approach in mice [[74]],
    • Molecular mechanisms of modulated electrohyperthermia (mEHT) induced tumor damage [[75]],
    • Modulated electro-hyperthermia inhibits tumor progression in a triple negative mouse breast cancer model [[76]],
    • Radiotherapy and modulated electro-hyperthermia effect on Panc1 and Capan1 pancreas adenocarcinoma cell lines [[77]],
    • Testing modulated electro-hyperthermia using C26 colorectal carcinoma cell line in vitro [[78]],
    • The efficiency of modulated electro-hyperthermia may correlate with the tumor metabolic profiles [[79]],
    • Nanoheating without Artificial Nanoparticles Part II. Experimental support of the nanoheating concept of the modulated electro-hyperthermia method, using U937 cell suspension model [[80]],
    • Oncothermia clinical & experimental studies in progress [[81]],
    • Oncothermia in laboratory [[82]],
    • Early changes in mRNA and protein expression related to cancer treatment by modulated electro-hyperthermia [[83]],
    • Oncothermia basic research at in vivo level. The first results in Japan [[84]],
    • Regulation of Tonglian decoction on cell cycle and signal pathway mediated with NF-kB in cell line MGC-803 of gastric carcinoma [[85]],
    • Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage [[86]],
    • Electric field regulation of chondrocyte biosynthesis in agarose gel constructs [[87]],

Tumor-growth

    • Lorus study report [[88]],

Theoretical & In silico studies

General reviews

    • Exploring biocomplexity in cancer: A comprehensive review [[89]],
    • On the thermal distribution in oncological hyperthermia treatments [[90]],
    • Peto’s “paradox” and six degrees of cancer prevalence [[91]],
    • Supportive and palliative care in cancer therapies — Path from tumor-driven therapies to patient-driven ones [[92]],
    • Experimental and computational evaluation of capacitive hyperthermia [[93]],
    • Forcing the antitumor effects of HSPs using a modulated electric field [[94]],
    • Stimulation and control of homeostasis [[95]],
    • Heterogeneous heat absorption is complementary to radiotherapy [[96]],
    • Vascular fractality and alimentation of cancer [[97]],
    • The growth of healthy and cancerous tissues [[98]],
    • Experiment with personalized dosing of hyperthermia [[99]],
    • Quo vadis oncological hyperthermia (2020)? [[100]],
    • Preface for the book Challenges and solutions of oncological hyperthermia [[101]],
    • Local treatment with systemic effect: Abscopal outcome [[102]],
    • Elektromágneses daganatterápiás készülék preklinikai és klinikai vizsgálatai, valamint műszaki továbbfejlesztése: tapasztalatok szolid tumorokkal (Preclinical and clinical investigation and development of electromagnetic oncological device - experience with solid tumors) [[103]],
    • Thermal and nonthermal effects of radiofrequency on living state and applications as an adjuvant with radiation therapy [[104]],
    • Oncothermia and the paradigm shift in integrative oncology [[105]],
    • An allometric approach of tumor angiogenesis [[106]],
    • Modulated electro-hyperthermia, (mEHT) From LAB to clinic [[107]],
    • Basic principle and new results of Oncothermia [[108]],
    • Redefining Hyperthermia: A Not Temperature-Dependent Solution of The Temperature Problem [[109]],
    • Modulated Electro-Hyperthermia: Role in Developing Countries [[110]],
    • Local oncothermia treatment fights against systemic malignancy [[111]],
    • Oncothermia development in Hungary [[112]],
    • DEBATE treatment planning & thermometry [[113]],
    • Oncotherm a company devoted for innovation in oncological hyperthermia from 1988 [[114]],
    • Oncothermia is a kind of hyperthermia. Hot topics: temperature, dose, selectivity [[115]],
    • What is on the horizon for hyperthermic cancer therapy? [[116]],
    • Nanothermia: A heterogenic heating approach [[117]],
    • Oncothermia: New Method of Tumor Therapy [[118]],
    • Personalised dosing of hyperthermia [[119]],
    • The place and role of clinical hyperthermia in oncological thermotherapy: let’s define what we are talking about [[120]],
    • Quo vadis oncological Hyperthermia Update 2016 [[121]],
    • Workshop, local hyperthermia [[122]],
    • The cancer revolution [[123]],
    • A brief overview of hyperthermia in cancer treatment [[124]],
    • Oncothermia - Nano-heating paradigm [[125]],
    • The Orientation, Application and Efficacy Evaluation of Hyperthermia in Integrative Natural Therapies of Cancer [[126]],
    • Ozone Therapy and Combined PRP Applications [[127]],
    • Hyperthermia: Thermal Trap and A thermal Solution [[128]],
    • Hyperthermia versus oncothermia: Cellular effects in complementary cancer therapy [[129]],
    • "Quo vadis" oncologic hyperthermia? [[130]],
    • Critical Analysis Of Electromagnetic Hyperthermia Randomized Trials: Dubious Effect And Multiple Biases [[131]],
    • The History Of Hyperthermia Rise And Decline [[132]],
    • Challenges and Solutions in Oncological Hyperthermia [[133]],
    • Oncothermia: A new paradigm and promising method in cancer therapies [[134]],
    • Autoregulation of the brain temperature during whole body hyperthermia [[135]],
    • New cancer paradigm and new treatment: the example of METABLOC [[136]],
    • Hypoxia, Immunity, Metabolism and Hyperthermia [[137]],
    • Electromagnetic effects in nanoscale range [[138]],
    • Oncothermia treatment induced immunogenic cancer cell death [[139]],
    • Past, Present and Future of Oncothermia [[140]],
    • Burden of oncothermia – Why is it special? [[141]],
    • Renewing Oncological Hyperthermia-Oncothermia [[142]],
    • Essentials of oncothermia [[143]],
    • Hyperthermia versus oncothermia: Cellular effects in cancer therapy [[144]],
    • Cancer Treatment Approach at St. George Hospital [[145]],
    • Is an Integrative Cancer Therapy Concept (ICTC) the answer to improve the present situation in cancer care? [[146]],
    • The Oncotherm story in personal view (History of modulated electro-hyperthermia) [[147]],
    • „Hyperthermie: Wo bleibt die Evidenz?“ [[148]],
    • Oncothermia treatment of cancer: from the laboratory to clinic [[149]],
    • Oncothermie [[150]],
    • Front page illustration of Forum Medizine [[151]],
    • Traditionen und Reformen in der onkologischen Hyperthermie [[152]],
    • What is against the acceptance of hyperthermia treatment? [[153]],
    • Hyperthermie in der Tumortherapie [[154]],
    • Hyperthermia in oncology: A promising new method? [[155]],
    • Hyperthermia today: electric energy, a new opportunity in cancer treatment [[156]],
    • Hyperthermie in der Tumortherapie [[157]],
    • What is against the acceptance of hyperthermia? [[158]],
    • Hyperthermie in der Onkologie: eine aktuell beforschte Behandlungsmethode [[159]],
    • New Results, New Hopes [[160]],
    • Elektromagnetische Hyperthermieverfahren: die kapazitive Kopplung [[161]],
    • Hyperthermia for Oncology: An effective new treatment modality [[162]],
    • Hyperthermie in der Onkologie mit einem historischen Überblick [[163]],
    • Onkotermia fizika a rák ellen [[164]],
    • Electro-hyperthermia: a new paradigm in cancer therapy [[165]],
    • Hipertermia az onkológiában: onkotermia [[166]],
    • Too hot for cancer [[167]],
    • Komparative, retrospektive klinische Studie in Bezug auf mit Onkothermie behandelten [[168]],
    • Az ezerarcú víz [[169]],
    • The myriad-minded water [[170]],
    • Stellenwert der Hyperthermie in der Onkotherapie [[171]],
    • Formen der Hyperthermie und klinische Ergebnisse [[172]],

Legal issues

    • Lokale Hyperthermie wissenschaftliche und wirtschaftliche Aspekte und ihr Einfluss auf die Kostenübernahme durch die Krankenkasse [[173]],
    • Elektrohyperthermie: Erstattungfähingkeit und korrekte Abrechnung an aktuellen Beispielen aus der Rechtsprechung [[174]],
    • Neue Herausforderungen im Praxis- und Klinikmanagement: Prozessoptimierung durch echtes Factoring [[175]],
    • Regionale Elektrohyperthermie: Ordnungsgemäße Abrechnung und Erstattungsfähigkeit [[176]],
    • Die Erstattungsfähigkeit hyperthermischer Behandlungen durch die GKV – Anspruch und Wirklichkeit nach dem Nikolaus – Beschluss des BVerfG [[177]],
    • Status and Prospect on Contemporary Natural Medicine [[178]],
    • Die Abbildung komplementärer Therapien im deutschen Gesundheitssystem-Kostenübernahme durch GKV und PKV [[179]],
    • Hyperthermie-Erstattung durch die GKV – Ein Überblick über die aktuelle Rechtsprechung anhand von vier Entscheidungen aus den Monaten August und September 2011 [[180]],

Books

    • Thermodynamic description of living homeostasis [[181]],
    • Development in oncological hyperthermia [[182]],
    • Challenges and solutions of oncological hyperthermia [[183]],
    • Rescuing your own cancer: changing the microenvironment of the tumor to overcome cancer with self-healing [[184]],
    • Heat therapy in oncology, New paradigm in electro-hyperthermia [[185]],
    • Hyperthermia in oncology [[186]],
    • Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia [[187]],
    • Electromagnetic effects in nanoscale range. Cellular Response to Physical Stress and Therapeutic Applications [[188]],
    • Local hyperthermia in Oncology – To Choose or not to Choose? [[189]],
    • Heat Therapy in oncology [[190]],
    • Oncothermia – Principles and practices [[191]],
    • Physical background and technical realization of hyperthermia [[192]],

Theses

    • Antitumor effects of modulated electro-hyperthermia in 4T1 triple-negative breast cancer models [[193]],
    • Mechanism of modulated electro-hyperthermia induced tumor growth suppression in B16F10 melanoma pulmonary metastases [[194]],
    • Mechanism of modulated electro-hyperthermia induced tumor destruction in C26 colorectal cancer models [[195]],
    • Investigations on bovine viral diarrhea virus and some of the disease forms caused by the infection [[196]],
    • Developments into electromagnetic stimulation of neural cells [[197]],
    • Studies on modulated electrohyperthermia induced tumor cell death in a colorectal carcinoma model [[198]],
    • Preclinical investigation on the biological effects of modulated electro-hyperthermia [[199]],
    • Studio dei meccanismi fisiopatologici dell’ipertermia oncologica e dell’oncothermia [[200]],
    • Electric field regulation of chondrocyte proliferation, biosynthesis, and cellular signaling [[201]],

Dose

    • Approaching complexity: Hyperthermia dose and its possible measurement in oncology [[202]],
    • Oncological hyperthermia: The correct dosing in clinical applications [[203]],
    • Efficacy and dose of local hyperthermia [[204]],
    • Hyperthermia dosing and depth of effect [[205]],
    • Performance comparison of electro-hyperthermia devices: EHY-2000plus and EHY-2030 [[206]],
    • Patient-specific simulation for selective liver tumor treatment with noninvasive radiofrequency hyperthermia (not mEHT!) [[207]],
    • Connections between the specific absorption rate and the local temperature [[208]],
    • Heating, efficacy and dose of local hyperthermia [[209]],
    • Generalization of the thermal dose of hyperthermia in oncology [[210]],
    • Critical analysis of the thermodynamics of reaction kinetics [[211]],
    • Hyperthermia, a Modality in the Wings [[212]],
    • Dose concept of oncological hyperthermia: Heat-equation considering the cell destruction [[213]],

Homeostasis

    • The intrinsic self-time of biosystems [[214]],
    • On the self-similarity in biological processes [[215]],
    • On the Dynamic Equilibrium in Homeostasis [[216]],
    • Study of the oxygen mass transfer in a gas-dispersing apparatus [[217]],

Blood-flow

    • Negative impedance interval of blood flow in capillary bed [[218]],
    • Non-Newtonian analysis of blood-flow [[219]],
    • Non-Mechanical Energy Transfer of Electrically Neutral Electrolytes [[220]],
    • Hyperthermic radiology. Why to combine? [[221]],
    • Hyperthermia and hypoxia: new developments in anticancer chemotherapy [[222]],

Field effects

    • Memristor hypothesis in malignant charge distribution [[223]],
    • Cancer-specific resonances [[224]],
    • Time-fractal modulation – Possible modulation effects in human therapy [[225]],
    • Bio-electromagnetics without fields: The effect of the vector potential [[226]],
    • Bioelectromagnetic paradigm of cancer treatment – Modulated electro-hyperthermia (mEHT) [[227]],
    • Role of electrical forces in angiogenesis [[228]],
    • Electrokinetics of temperature for development and treatment of effusions [[229]],
    • Reorganization of actin filaments and microtubules by outside electric field [[230]],
    • Oncothermia: Complex therapy by EM and fractal physiology [[231]],
    • Effect of Curl-Free Potentials on Water [[232]],
    • Do Field-Free Electromagnetic Potentials Play a Role in Biology? [[233]],
    • Axial vector interaction with bio-systems [[234]],
    • On the thermal noise limit of cellular membranes [[235]],
    • Bioelectromagnetic interactions in agriculture: Controversial positions [[236]],
    • Device and procedure for measuring and examining the signal of systems releasing measurable signal during operation or in response to external excitation [[237]],
    • Industrial device for stimulating seeds [[238]],
    • Is the structure of the water convertible in physical way? [[239]],
    • Üzemi berendezés vetőmagvak stimulációjára [[240]],

Membrane effects

    • The capacitive coupling modalities for oncological hyperthermia [[241]],
    • Physics of hyperthermia – Is physics really against us? [[242]],
    • Time-fractal modulation of modulated electro-hyperthermia (mEHT) [[243]],
    • Technical challenges and proposals in oncological hyperthermia [[244]],
    • Time-fractal modulation of modulated electro-hyperthermia (mEHT) [[245]],
    • Effect of cellular membrane resistivity inhomogeneity on the thermal noise-limit [[246]],
    • New Theoretical Treatment of Ion Resonance Biological Phenomena [[247]],
    • An energy analysis of extracellular hyperthermia [[248]],
    • Heat penetration into the cell wall [[249]],
    • Response of bio-systems on white noise excitation [[250]],
    • Origin of pink-noise in bio-systems [[251]],
    • Water states in living systems. I. Structural aspects [[252]],

Nano heating

    • Heating preciosity - trends in modern oncological hyperthermia [[253]],
    • Energy absorption by the membrane rafts in the modulated electro-hyperthermia (mEHT) [[254]],
    • Immune effects by selective heating of membrane rafts of cancer-cells [[255]],
    • Heating of membrane raft of cancer-cells [[256]],
    • Nanoheating without Artificial Nanoparticles [[257]],
    • Electromagnetic effects in nanoscale range. Cellular Response to Physical Stress and Therapeutic Applications [[258]],

Cell-structures

    • Connections between Warburg’s and Szentgyorgyi’s Approach about the Causes of Cancer [[259]],
    • Reorganization of the cytoskeleton [[260]],
    • Why modulated electrohyperthermia (mEHT) destroys the rouleaux formation of erythrocytes? [[261]],
    • Bystander Effect of Oncothermia [[262]],
    • Why does Oncothermia destroy the rouleaux formed erythrocytes? [[263]],
    • Topological Correlation in amorphous structures [[264]],
    • Appearance of collectivity in two-dimensional cellular structures [[265]],
    • From Random Cellular Structure to the Honeycomb Pattern [[266]],
    • From two dimensional cellular structures to the honeycomb pattern [[267]],
    • Háromdimenziós sejtrendszerek topológiai összefüggései [[268]],
    • Topological aspects of ordering: Proceeding of the 7th Seminar of IFHT Heat Treatment Surface Engineering of Light Alloys [[269]],

Other structural considerations

    • Intrinsic Noise Monitoring of Complex Systems [[270]],
    • Synergetic model of the formation of non-crystalline structures [[271]],
    • On the topology of 2D polygonal and generalized cell systems [[272]],
    • On the Aboav-Weaire law [[273]],
    • Modelling of the dissipative structure of water [[274]],
    • Self-organizing processes and dissipative structure formation in the non-crystalline materials [[275]],
    • A synergetic representation for the double-structure model of liquid water [[276]],
    • Two-structure model of liquid water [[277]],
    • Correlation between the structural and electronic stability factors [[278]],
    • Electronically Driven Short-Range Lattice Instability: Possible Role in Superconductive Pairing [[279]],
    • A short-range electronic instability in high Tc superconductors [[280]],
    • Fractal models for the autocatalytic growth of amorphous thin films [[281]],
    • Close-packed Frank-Kasper coordination and high critical temperature superconductivity [[282]],
    • On electronic structure and metastability [[283]],
    • Correlation of metastability, icosahedral symmetry and high-critical-temperature superconductivity [[284]],
    • The exact solution of the real square-lattice-gas system [[285]],
    • On the model calculation of the excitonic-like states and their possible role in autocatalytic processes [[286]],
    • One possible analytical approximation of the critical point of the three-dimensional Ising model [[287]],
    • Coherent potential approximation of the relationship between short-range order and the position of the fermi level on the state density curves [[288]],

Personalization

    • Impedance matching and its consequences for modulated electro hyperthermia [[289]],
    • Impedance matching and its consequences for modulated electro hyperthermia [[290]],
    • Notes on psychophysics [[291]],
    • Considering skin physiology in capacitive-coupled hyperthermia [[292]],
    • Oncothermia as personalized treatment option [[293]],
    • Progress of research of hyperthermia integration with TCM in the treatment of cancer [[294]],
    • Oncothermia and traditional Chinese medicine [[295]],
    • Is an Integrative Cancer Therapy Concept (ICTC) the answer to improve the present situation in cancer care? [[296]],

Complexity

    • The immunogenic connection of thermal and nonthermal molecular effects in modulated electro-hyperthermia [[297]],
    • Time-fractal in living objects [[298]],
    • Allometric scaling by the length of the circulator network [[299]],
    • Data mining and evaluation of single arm clinical studies [[300]],
    • Parametrization of survival measures, Part I: Consequences of self-organizing [[301]],
    • Parametrization of survival measures, Part II: Single arm studies [[302]],
    • Parametrization of survival measures, Part III: Clinical evidences in single arm studies with endpoint of overall survival [[303]],
    • Evaluation of clinical studies when no reference arm exists [[304]],
    • New look at an old principle: An alternative formulation of the theorem of minimum entropy production [[305]],
    • On the Feynman Ratchet and the Brownian motor [[306]],
    • Internal charge redistribution and currents in cancerous lesions [[307]],
    • Onsagerian quantum mechanics [[308]],
    • Nonequilibrium thermodynamic and quantum model of a damped oscillator [[309]],
    • Rosen-Chambers variation theory of linearly-damped classic and quantum oscillator [[310]],
    • On the extremum properties of thermodynamic steady state in non-linear systems [[311]],
    • Pink noise behaviour of the bio-systems [[312]],
    • Bio-response to White Noise Excitation [[313]],
    • An electrically driven instability: the living-state (Does the room temperature superconductivity exist?) [[314]],

Electromagnetic radiation

  • Metal-framed spectacles and implants and specific absorption rate among adults and children using mobile phones at 900/1800/2100 MHz [[315]],
  • A mobiltelefonokból származó elektromágneses expozíció alakulása 900/1800/2100 MHz frekvencián [[316]],
  • Assessment of electromagnetically treated wheat kernel at 120Hz using the FDTD method [[317]],

 


[[1]] Kao P H-J, Chen C-H, Chang Y-W, et al. (2020) Relationship between energy dosage and apoptotic cell death by modulated electro-hyperthermia, Scientific reports, 10:8936, DOI: 10.1038/s41598-020-65823-2, https://www.nature.com/articles/s41598-020-65823-2
[[2]] Danics L, Schvarcz Cs, Viana P, et.al. (2020) Exhaustion of protective heat shock response induces significant tumor damage by apoptosis after modulated electro-hyperthermia treatment of triple negative breast cancer isografts in mice, Cancers, 12, 2581, doi:10.3390/cancers12092581, https://pubmed.ncbi.nlm.nih.gov/32927720/
[[3]] Krenacs T, Meggyeshazi N, Forika G, et.al. (2020) Modulated electro-hyperthermia-induced tumor damage mechanisms revealed in cancer models, Int J Molecular Sciences, 21, 6270, pp. 1-25, doi:10.3390/ijms21176270, https://www.mdpi.com/1422-0067/21/17/6270
[[4]] Forika G, Balogh A, Vancsik T, Zalatnai A, et.al. (2020) Modulated electro-hyperthermia resolves radioresistance of Panc1 pancreas adenocarcinoma and promotes DNA damage and apoptosis in vitro, Int. J. Mol. Sci., 21, 5100, 1-15, https://pubmed.ncbi.nlm.nih.gov/32707717/
[[5]] Forika G, Balogh A, Vancsik T. (2019) Elevated apoptosis and tumor stem cell destruction in a radioresistant pancreatic adenocarcinoma cell line when radiotherapy is combined with modulated electrohyperthermia, Oncothermia Journal 26:90-98, https://oncotherm.com/sites/oncotherm/files/2019-07/Elevated_apoptosis_and_tumor_stem_cell.pdf
[[6]] Krenacs T, Meggyeshazi N, Kovago Cs, et.al. (2019) A modulált elektrohipertermia (mEHT) indukálta tumorkárosodás mechanizmusa kolorektális karcinóma modellben (Mechanism of action of modulated elec¬tro-hyperthermia (mEHT) induced tumor damage in col¬orectal adenocarcinoma models), Magyar Onkológia, 63:359-364, https://www.ncbi.nlm.nih.gov/pubmed/?term=Mechanism+of+action+of+modulated+electro-+hyperthermia+(mEHT)+induced+tumor+damage+in+colorectal+adenocarcinoma+models
[[7]] Chen C-C, Chen C-L, Li J-J, et.al. (2019) The presence of gold nanoparticles in cells associated with the cell-killing effect of modulated electro-hyperthermia, ACS Applied Bio Materials, 2, 3573-3581, https://doi.org/10.1021/acsabm.9b00453, Supporting information: https://pubs.acs.org/doi/suppl/10.1021/acsabm.9b00453/suppl_file/mt9b00453_si_001.pdf
[[8]] Jeon T-W, Yang H, Lee CG, O ST, et.al. (2016) Electro-hyperthermia up-regulates tumour suppressor Septin 4 to induce apoptotic cell death in hepatocellular carcinoma, Int. J. Hyp., 7:1-9, http://dx.doi.org/10.1080/02656736.2016.1186290
[[9]] Cha, J, Jeon T-W, Lee C-G, et al. (2015) Electro-hyperthermia inhibits glioma tumorigenicity through the induction of E2F1-mediated apoptosis, Int. Journal Hyperthermia, 31(7):784-792, http://www.ncbi.nlm.nih.gov/pubmed/26367194
[[10]] Meggyeshazi N, Andocs G, Balogh L, et al. (2014) DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia. Strahlenther Onkol 190:815-822, http://www.ncbi.nlm.nih.gov/pubmed/24562547
[[11]] Andocs G, Meggyeshazi N, Balogh L, et al. (2014) Upregulation of heat shock proteins and the promotion of damage-associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia. Cell Stress and Chaperones 20(1):37-46, http://www.ncbi.nlm.nih.gov/pubmed/24973890
[[12]] Meggyeshazi N, Andocs G, Krenacs T. (2013) Programmed cell death induced by modulated electro-hyperthermia. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 187835, http://www.hindawi.com/archive/2013/187835/
[[13]] Meggyeshazi N, Andocs G, Spisak S, et al. (2013) Modulated electrohyperthermia causes caspase independent programmed cell death in HT29 colon cancer xenografts. Virchows Arch 463(2):329
[[14]] Meggyeshazi N, Andocs G, Krenacs T. (2012) Modulated electro-hyperthermia induced programmed cell death in HT29 colorectal carcinoma xenograft. Virchows Arch 461 (Suppl 1): S131–S132
[[15]] Meggyeshazi N, Andocs G, Balogh L, Krenacs T. (2011) DNA fragmentation-driven tumor cell degradation induced by modulated electro-hyperthermia. Virchows Arch 459 (Suppl 1): S204-205
[[16]] Andocs G, Balogh L, Meggyeshazi N, Jakab Cs, Krenacs T, Szasz A. (2010) A modulált rádiófrekvenciás (RF) hyperthermia (oncothermia) apoptózis-indukáló hatása immunhiányos egér xenograft tumorokban [The apoptosis-inducing effect of modulated radio-frequency (RF) hyperthermia (oncothermia) on immune deficient mouse xenograft tumors]. Orvostovábbképző Szemle 2010. november különszám pp. 24-25.
[[17]] Meggyeshazi N, Krenacs T, Szasz A. (2010) Klinikai vizsgálatok és evidenciák a modulált vezetéses rádiófrekvenciás hyperthermia (oncothermia) alkalmazásában [Clinical trials and evidences of the application of modulated radio-frequency hyperthermia]. Orvostovábbképző Szemle 2010. november különszám pp. 25-26.
[[18]] Brockmann W-P. (2020) Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil IIb: Weitere fallbezogene Darstellungen der abskopaltherapie, Die Naturheilkunde/ Forum Komplementäre Onkologie, Ausgabe 1/2020, 3-5
[[19]] Brockmann W-P. (2020) Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil III: Literaturvergleich und Diskussion, Die Naturheilkunde/ Forum Komplementäre Onkologie, Ausgabe 2/2020, 3-5
[[20]] Brockmann W-P. (2019) Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil I: Abskopaleffekte in der Onkologie, Vorwort und Einführung, Die Naturheilkunde/ Forum Komplementäre Onkologie, Ausgabe 4/2019, 6-7
[[21]] Brockmann W-P. (2019) Vom Abskopaleffekt zur Abskopaltherapie – Provizierte Spontanremissionen als neue Immuntherapie bei Krebs, Teil IIa: Fallbezogene Abskopaltherapie mit provoziert radiogenem Abskopaleffekt entsprechend einer radiogenen autologin spezifischen Immuntherapie (RASI), Die Naturheilkunde/ Forum Komplementäre Onkologie, Ausgabe 5/2019, 3-5
[[22]] Vancsik T, Kovago Cs, Kiss E, et al. (2018) Modulated electro-hyperthermia induced loco-regional and systemic tumor destruction in colorectal cancer allografts, J Cancer, 9(1): 41-53, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743710/pdf/jcav09p0041.pdf
[[23]] Tsang Y-W, Huang C-C, Yang K-L, et al. (2015) Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy, BMC Cancer 15:708, http://www.ncbi.nlm.nih.gov/pubmed/26472466, Supplementary material: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608323/bin/12885_2015_1690_MOESM1_ESM.docx
[[24]] Qin W, Akutsu Y, Andocs G, et al. (2014) Modulated electro-hyperthermia enhances dendritic cell therapy through an abscopal effect in mice. Oncol Rep 32(6):2373-2379, http://www.ncbi.nlm.nih.gov/pubmed/25242303
[[25]] Andocs G, Meggyeshazi N, Okamoto Y, Balogh L, Szasz A. (2013) Bystander effect of oncothermia. Oncothermia Journal 7:343-347, https://oncotherm.com/sites/oncotherm/files/2017-07/Bystander_effect_of_oncothermia_T.pdf
[[26]] Lee SY., Szasz A. (2022) Immunogenic Effect of Modulated Electro-hyperthermia (mEHT) in Solid Tumors. In: Interdisciplinary Cancer Research. Springer, Cham. https://doi.org/10.1007/16833_2022_74
[[27]] Vancsik T, Mathe D, Horvath I, et.al. (2021) Modulated electro-hyperthermia facilitates NK-cell infiltration and growth arrest of human A2058 melanoma in a xenograft model, Frontiers in Oncology, 11:590764, doi: 10.3389/fonc.2021.590764, https://www.frontiersin.org/articles/10.3389/fonc.2021.590764/full
[[28]] Kuo I-M, Lee J-J, Wang Y-S, et.al. (2020) Potential enhancement of host immunity and anti-tumor efficacy of nanoscale curcumin and resveratrol in colorectal cancers by modulated electro-hyperthermia, BMC Cancer, 20:603, https://doi.org/10.1186/s12885-020-07072-0, https://pubmed.ncbi.nlm.nih.gov/32600429/
[[29]] Szasz A. (2020) Towards the immunogenic hyperthermic action: Modulated electro-hyperthermia, Clinical Oncology and Research, Science Repository, 3(9):5-6, https://www.sciencerepository.org/towards-the-immunogenic-hyperthermic-action-modulated-electro-hyperthermia_COR-2020-9-107
[[30]] Besztercei B, Vancsik T, Benedek A, et al. (2019) Stress-induced, p53-mediated tumor growth inhibition of melanoma by modulated electrohyperthermia in mouse models without major immunogenic effects, Int J Molecular Science, 20(16): E4019. doi: 10.3390/ijms20164019, https://www.mdpi.com/1422-0067/20/16/4019
[[31]] Krenacs T, Benyo Z. (2017) Tumor specific stress and immune response induced by modulated electrohyperthermia in relation to tumor metabolic profiles Oncothermia Journal Volume 20: 264-272, https://oncotherm.com/sites/oncotherm/files/2017-10/Pages%20from%20Oncothermia%20Journal%20volume%2020-10_0.pdf
[[32]] Vancsik T., Kiss E, Kovago Cs, Meggyeshazi N, Forika G, Krenacs T. (2017) Inhibition of proliferation, induction of apoptotic cell death and immune response by modulated electro-hyperthermia in C26 colorectal cancer allografts, thermometry Oncothermia Journal Volume 20 : 277-292, https://oncotherm.com/sites/oncotherm/files/2017-10/Pages%20from%20Oncothermia%20Journal%20volume%2020-13.pdf
[[33]] Tsang Y-W, Huang C-C, Yang K-L, Chi M-S, Chiang H-C, Wang Y-S, Andocs G, Szasz A, Li W-T, Chi K-H. (2015) Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy. Oncothermia Journal 15:55-66, https://oncotherm.com/sites/oncotherm/files/2017-07/Improving_immunological_tumor_microenvironment_using_electro-hyperthermia.pdf
[[34]] Priester MI, Curto S, van Rhoon GC, ten Hagen LM. (2021) External basic hyperthermia devices for preclinical studies in small animals, Cancers, 13, 4628, https://doi.org/10.3390/cancers13184628
[[35]] Yang K-L, Huang C-C, Chi M-S, Chiang H-C, Wang Y-S, Andocs G, et.al. (2016) In vitro comparison of conventional hyperthermia and modulated electro-hyperthermia, Oncotarget, 7(51): 84082-84092, doi: 10.18632/oncotarget.11444, http://www.ncbi.nlm.nih.gov/pubmed/27556507
[[36]] Andocs G, Rehman MU, Zhao Q-L, Tabuchi Y, Kanamori M, Kondo T. (2016) Comparison of biological effects of modulated electro-hyperthermia and conventional heat treatment in human lymphoma U937 cell, Cell Death Discovery (Nature Publishing Group), 2, 16039, http://www.nature.com/articles/cddiscovery201639
[[37]] Kim H, Kim D, Kim W, et.al. (2022) The efficacy of radiation is enhanced by Metformin and hyperthermia alone or combined against FSaII fibrosarcoma in C3H mice, Radiation Research, 198, 190-199, https://pubmed.ncbi.nlm.nih.gov/35930015/
[[38]] Son B, Jeon J, Lee, et.al. (2019) Radiotherapy in combination with hyperthermia suppresses lung cancer progression via increased NR4A3 and KLF11 expression, Int J. Radiat Biol, 95(12):1696-1707. doi: 10.1080/09553002.2019.1665213, https://www.ncbi.nlm.nih.gov/pubmed/31498019
[[39]] Szasz O. (2019) Molecular basis of modulated electro-hyperthermia combination with radio- and chemo-therapies: Oncothermia Journal 26:149-157, https://oncotherm.com/sites/oncotherm/files/2020-02/Molecular_basis_of_modulated_electrohyperthermia.pdf
[[40]] Prasad B, Kim S, Cho W, et.al. (2019) Quantitative estimation of the equivalent radiation dose escalation using radiofrequency hyperthermia in mouse xenograft models of human lung cancer, Scientific Reports, Nature, 9: 3942, https://www.nature.com/articles/s41598-019-40595-6
[[41]] McDonald M, Jackson M, et.al. (2018) First in vitro evidence of modulated electro-hyperthermia treatment performance in combination with megavoltage radiation by clonogenic assay, Sci Rep. 8(1):16608. doi: 10.1038/s41598-018-34712-0, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226525/
[[42]] Kim J-K, Prasad B, Kim S. (2017) Temperature mapping and thermal dose calculation in combined radiation therapy and 13.56 MHz radiofrequency hyperthermia for tumor treatment. Proc. SPIE 10047, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVI, 1004718; http://spie.org/Publications/Proceedings/Paper/10.1117/12.2253163?origin_id=x4318
[[43]] Vancsik T, Forika G, Balogh A, et.al. (2019) Modulated electro-hyperthermia induced p53 driven apoptosis and cell cycle arrest additively support doxorubicin chemotherapy of colorectal cancer in vitro, Cancer Medicine, (9):4292-4303, doi: 10.1002/cam4.2330, https://www.ncbi.nlm.nih.gov/pubmed/31183995
[[44]] Tsang Y-W, Chi K-H, Huang C-C, et.al. (2019) Modulated electro-hyperthermia-enhanced liposomal drug uptake by cancer cells, International Journal of Nanomedicine, 14:1269-1579, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6475024/
[[45]] Balogh L, Polyak A, Postenyi Z et al. (2016) Temperature increase induced by modulated electrohyperthermia (oncothermia®) in the anesthetized pig liver, Journal of Cancer Research and Therapeutics, 12(3):1153-1159, http://www.cancerjournal.net/article.asp?issn=0973-1482;year=2016;volume=12;issue=3;spage=1153;epage=1159;aulast=Balogh
[[46]] Andocs G, Osaki T, Tsuka T, Imagawa T et al. (2013) Oncothermia research at preclinical level. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 272467, http://www.hindawi.com/archive/2013/272467/
[[47]] Kovago Cs, Meggyeshazi N, Andocs G, Szasz A. (2013) Report of the pilot-study done for the proposed investigation on the possible synergic effect between high dose ascorbic acid application and oncothermia treatment. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 386913, http://www.hindawi.com/archive/2013/386913/
[[48]] Andocs G, Okamoto Y, Kawamoto K, et al. (2013) Oncothermia basic research at in vivo level. The first results in Japan. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 197328, http://www.hindawi.com/archive/2013/197328/
[[49]] Balint K, Balogh L, Postenyi Z, Andocs G, Szasz A, et.al. (2011) Diagnostic and therapeutic aspects of canine malignant melanoma. Part 2. Own experiences, Magyar Állatorvosok Lapja, 2011 július:424-431
[[50]] Wust P, Veltsista PD, Oberacker E, Yavvari P, Walther W, Bengtsson O, et.al. (2022) Radiofrequency electromagnetic fields cause non-temperature-induced physical and biological effects in cancer cells, Cancers, 14, 5349. https://doi.org/10.3390/cancers14215349, https://www.mdpi.com/2072-6694/14/21/5349
[[51]] Wust P, Stein U, Ghadjar P. (2021) Non-thermal membrane effects of electromagnetic fields and therapeutic applications in oncology, Int. J. Hyperthermia, 38(1):715-731, doi: 10.1080/02656736.2021.1914354, https://pubmed.ncbi.nlm.nih.gov/33910472/
[[52]] Wust P, Kortum B, Strauss U, Nadobny J, Zschaeck S, Beck M, et.al. (2020) Non-thermal effects of radiofrequency electromagnetic fields, Scientific Reports, 10:13488, https://www.nature.com/articles/s41598-020-69561-3
[[53]] Orczy-Timko B. (2020) Phantom measurements with the EHY-2030 device, in book Challenges and solutions of oncological hyperthermia, ed. Szasz A., Ch. 18, pp.416-428, Cambridge Scholars, https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[[54]] Chung H-J, Kim H-J, Hong S-T. (2019) Iron-dextran as a thermosensitizer in radiofrequency hyperthermia for cancer treatment, Appl Biol Chem, 62:24, 1-9, https://applbiolchem.springeropen.com/articles/10.1186/s13765-019-0432-6#citeas
[[55]] Prasad B, Kim S, Cho W, et.al. (2018) Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13,56-MHz radiofrequency hyperthermia, J Thermal Biology, 74:281-289, https://www.ncbi.nlm.nih.gov/pubmed/29801639
[[56]] Chung H-J, Lee H-K, et.al. (2018) Transferrin as a thermosensitizer in radiofrequency hyperthermia for cancer treatment, Scientific Reports, published online: 10 September, 2018, 8:13505, https://www.nature.com/articles/s41598-018-31232-9.pdf
[[57]] Hossain MT, Prasad B, Park KS, et al. (2016) Simulation and experimental evaluation of selective heating characteristics of 13,56 MHz radiofrequency hyperthermia in phantom models, Int J Precision Eng and Manufacturing, 17(2):253-256, DOI: 10.1007/s12541-016-0033-9
[[58]] Nagy G, Meggyeshazi N, Szasz O. (2013) Deep temperature measurements in oncothermia processes. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 685264, http://www.hindawi.com/archive/2013/685264/
[[59]] Szasz O. (2011) Temperature measurements during Oncothermia (Collection of temperature measurements in loco regional hyperthermia). Oncothermia Journal 4:62-86, https://oncotherm.com/sites/oncotherm/files/2017-07/Temperature_measurements_during_oncothermia.pdf
[[60]] Szasz O. (2011) The role and measurement of temperature in oncothermia. Oncothermia Journal 4:13-14, https://oncotherm.com/sites/oncotherm/files/2017-07/The_role_and_mesurement_of_temperature_in_oncothermia.pdf
[[61]] Andocs G, Renner H, Balogh L, Fonyad L, Jakab C, Szasz A. (2009) Strong synergy of heat and modulated electromagnetic field in tumor cell killing, Study of HT29 xenograft tumors in a nude mice model. Strahlentherapie und Onkologie 185:120–126, http://www.ncbi.nlm.nih.gov/pubmed/19240999
[[62]] Herzog A. (2008) Messung der Temperaturverteilung am Modell der nicht perfundierten Schweineleber bei lokaler Hyperthermie mit Kurzwellen mit 13,56 MHz, Forum Hyperthermie, 1/10, 30-34
[[63]] Szasz A. (2021) Therapeutic basis of electromagnetic resonances and signal-modulation, Open Journal of Biophysics, 11, 314-350, https://www.scirp.org/journal/Open J Biophysics
[[64]] Wust P, Ghadjar P, Nadobny J, et.al. (2019) Physical analysis of temperature-dependent effects of amplitude-modulated electromagnetic hyperthermia, Int. J. Hyp., 36(1):1246-1254, https://www.ncbi.nlm.nih.gov/pubmed/31818170
[[65]] Wust P, Ghadjar P, Nadobny J, Beck M. (2019): Physical potentials of radiofrequency hyperthermia with amplitude modulation, Oncothermia Journal 26:128-137, https://oncotherm.com/sites/oncotherm/files/2019-07/Physical_potencials_of_radiofrequency_0.pdf
[[66]] Vincze Gy, Szasz A. (2018) Similarities of modulation by temperature and by electric field, OPEN J BIOPHYSICS, 8, 95-103, https://www.scirp.org/journal/PaperInformation.aspx?PaperID=84883
[[67]] Szasz O, Andocs G, Meggyeshazi N. (2013) Modulation effect in oncothermia. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 395678, http://www.hindawi.com/archive/2013/398678/
[[68]] Aloss K, Bokhari S.M.Z., Viana P.H.L., Giunashvili N., Schvarcz Cs., Benyo Z., Hamar P. (2024) Modulated electro-hyperthermia accelerates tumor delivery and improves anticancer activity of Doxorubicin encapsulated in lyso-thermosensitive liposomes in 4T1-tumor-bearing mice, Int J Molecular Sciences, 25, 3101, https://doi.org/10.3390/ijms25063101, https://pubmed.ncbi.nlm.nih.gov/38542073/
[[69]] Viana P.H.L., Schvarcz Cs.A., Danics L.O., Besztercei B, Aloss K., Bokhari S.M.Z., et.al. (2024) Heat shock factor 1 inhibition enhances the effects of modulated electro hyperthermia in a triple negative breast cancer mouse model, Sci Rep, 14, 8241, https://doi.org/10.1038/s41598-024-57659-x, https://pubmed.ncbi.nlm.nih.gov/38589452/
[[70]] Viana P, Hamar P. (2024) Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer, BBA – Reviews on Cancer 1879, 189069, https://doi.org/10.1016/j.bbcan.2023.189069, https://pubmed.ncbi.nlm.nih.gov/38176599/
[[71]] Bencze N., Schvarcz Cs., Kriszta G., Danics L., Szoke E., Balogh P., et.al. (2021) Desensitizatio of Capsaicin-sensitive afferents accelerates early tumor growth via increased vascular leakage in a murine model of triple negative breast cancer, Frontiers in Oncology, 11:685297, doi: 10.3389/fonc.2021.685297
[[72]] Schvarcz CsA., Danics L, Krenacs T, Viana P, Beres R, et.al. (2021) Modulated electro-hyperthermia induces a prominent local stress response and growth inhibition in mouse breast cancer isografts, Cancers, 13, 1744, https://doi.org/10.3390/cancers13071744, https://pubmed.ncbi.nlm.nih.gov/33917524/
[[73]] Schvarcz CsA., Danics L, Krenacs T, Viana P, Beres R, et.al. (2021) Modulated electro-hyperthermia induces a prominent local stress response and growth inhibition in mouse breast cancer isografts, Supplementary materials, S1-S4, Cancers, 13, 1744, https://doi.org/10.3390/cancers13071744, https://pubmed.ncbi.nlm.nih.gov/33917524/
[[74]] Thomas MB, Major E, Benedek A, Horváth I, Máthé D, Bergmann R, et.al. (2020) Suppression of metastatic melanoma growth in lung by modulated electro-hyperthermia monitored by a minimally invasive heat stress testing approach in mice, Cancers, 12, 3872, doi:10.3390/cancers12123872, https://pubmed.ncbi.nlm.nih.gov/33371498/
[[75]] Krenacs T. (2018) Molecular mechanisms of modulated electrohyperthermia (mEHT) induced tumor damage; Oncothermia Journal 24: 426-441, https://oncotherm.com/sites/oncotherm/files/2018-10/Molecular_mechanics_of_modulated_electrohyperthermia.pdf
[[76]] Danics L, Schvarcz Cs, Zolcsak Z. (2018): Modulated electro hyperthermia inhibits tumor progression in a triple negative mouse breast cancer model; Oncothermia Journal 24: 442-454, https://oncotherm.com/sites/oncotherm/files/2018-10/Modulated_electro_hyperthermia_inhibits_tumor.pdf
[[77]] Forika G. (2018): Radiotherapy and modulated electro-hyperthermia effect on Panc1 and Capan1 pancreas adenocarcinoma cell lines; Oncothermia Journal 24: 455-463, https://oncotherm.com/sites/oncotherm/files/2018-10/Radiotherapy_and_modulated_electro_hyperthermia.pdf
[[78]] Kiss E, Vancsik T, Forika G, Hamar P, Krenacs T. (2017) Testing modulated electro-hyperthermia using C26 colorectal carcinoma cell line in vitro, Oncothermia Journal Volume 20: 217-227, https://oncotherm.com/sites/oncotherm/files/2017-10/12.pdf
[[79]] Forika G, Vancsik T, Kiss E, Hujber Z, Sebestyen A, Krencz I, et.al. (2017) The efficiency of modulated electro-hyperthermia may correlate with the tumor metabolic profiles, Oncothermia Journal, Volume 20:228-235, https://oncotherm.com/sites/oncotherm/files/2017-10/Pages%20from%20Oncothermia%20Journal%20volume%2020-7_0.pdf
[[80]] Andocs G, Rehman MU, Zhao QL, Papp E, Kondo T, Szasz A. (2015) Nanoheating without Artificial Nanoparticles Part II. Experimental support of the nanoheating concept of the modulated electro-hyperthermia method, using U937 cell suspension model, Biology and Medicine 7(4):1-9, https://www.omicsonline.org/open-access/nanoheating-without-artificial-nanoparticles-part-ii-experimental-support-of-the-nanoheating-concept-of-the-modulated-electrohyperthermiamethod-0974-8369-1000247.php?aid=60362
[[81]] Szasz A, Szasz O. (2014) Oncothermia clinical & experimental studies in progress. Oncothermia Journal 12:125-128, https://oncotherm.com/sites/oncotherm/files/2017-07/Oncothermia%20_-_clinical_and_experimental_studies_in_progress.pdf
[[82]] Meggyeshazi N, Krenacs T, Andocs G, Szasz O. (2014) Oncothermia in laboratory. Oncothermia Journal 10:101-104, https://oncotherm.com/sites/oncotherm/files/2017-07/Oncothermia_in_laboratory.pdf
[[83]] Meggyeshazi N, Andocs G, Spisak S, et al. (2013) Early changes in mRNA and protein expression related to cancer treatment by modulated electro-hyperthermia. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 249563, http://www.hindawi.com/archive/2013/249563/
[[84]] Andocs G, Okamoto Y, Kawamotot, Osaki T, Tsuka T, Imagawa T, Minami S, Balogh L, Meggyeshazi N, Szasz O. (2013) Oncothermia basic research at in vivo level. The first results in Japan. Oncothermia Journal 7:296-300, https://oncotherm.com/sites/oncotherm/files/2017-07/Oncothermia_basic_research_at_in_vivo_level._The_first_results_In_Japan.pdf
[[85]] Yong-sen J, Bing-sheng H, Ji-an L, Hegyi G. (2013) Regulation of Tonglian decoction on cell cycle and signal pathway mediated with NF-kB in cell line MGC-803 of gastric carcinoma. Oncothermia Journal 7:167-169, https://oncotherm.com/sites/oncotherm/files/2017-07/Regulation_of_Tonglian_decoction_on_cell_cycle_and_signal_pathway_mediated_with_NF-kB_in_cell_line_MGC-803.pdf
[[86]] Fanning PJ, Emkey G, Smith RJ, et al. (2003) Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage, The Journal of Biological Chemistry, 278(51):50940-50948, http://www.jbc.org/content/278/51/50940.full
[[87]] Szasz N, Hung H, Sen S, et al. (2003) Electric field regulation of chondrocyte biosynthesis in agarose gel constructs, 49th Annual Meeting of the Orthopaedic Research Society, Poster Nr. 0672, https://www.ors.org/Transactions/49/0672.pdf
[[88]] Peralta RC, Lee Y. (2007) Lorus study report. Oncothermia Journal 14:72-87, https://oncotherm.com/sites/oncotherm/files/2017-07/Lorus_study_report_0.pdf
[[89]] Szasz A, Szigeti GP. (2024) Exploring biocomplexity in cancer: A comprehensive review, Open Journal of Biophysics, 14, 154-238, https://www.scirp.org/journal/paperinformation?paperid=132689
[[90]] Szasz A. (2024) On the thermal distribution in oncological hyperthermia treatments, Open Journal of Biophysics, 14, 239-263, https://www.scirp.org/journal/paperinformation?paperid=132691
[[91]] Szasz A. (2024) Peto’s “paradox” and six degrees of cancer prevalence, Cells, 13, 197, https://doi.org/10.3390/cells13020197, https://www.mdpi.com/2073-4409/13/2/197
[[92]] Minnaar CA, Szasz A, Lee SY, Szigeti GyP, Szasz AM, Mathe D. (2022) Supportive and palliative care in cancer therapies — Path from tumor-driven therapies to patient-driven ones, Int. J Clinical Medicine, 13, 287-359, https://www.scirp.org/journal/paperinformation.aspx?paperid=118909
[[93]] Beck M, Wust P, Oberacker E, Rattunde A, et.al. (2022) Experimental and computational evaluation of capacitive hyperthermia, International Journal of Hyperthermia, 39:1, 504-516, DOI: 10.1080/02656736.2022.2048093, https://pubmed.ncbi.nlm.nih.gov/35296213/
[[94]] Minnaar CA, Szasz A. (2022) Forcing the antitumor effects of HSPs using a modulated electric field, Cells, 11, 1838, https://doi.org/10.3390/cells11111838, https://pubmed.ncbi.nlm.nih.gov/35681533/
[[95]] Szasz A. (2022) Stimulation and control of homeostasis, Open Journal of Biophysics, 12, 89-131, https://doi.org/10.4236/Open J Biophysics.2022.122004
[[96]] Szasz A. (2022) Heterogeneous heat absorption is complementary to radiotherapy, Cancers, 14, 901, https://doi.org/10.3390/cancers14040901
[[97]] Szasz A. (2021) Vascular fractality and alimentation of cancer, International Journal of Clinical Medicine, 12, 279-296, https://doi.org/10.4236/ijcm.2021.127025
[[98]] Szigeti GyP, Szasz AM, Szasz A. (2020) The growth of healthy and cancerous tissues, Open J Biophysics, 10, 113-128, https://www.scirp.org/pdf/Open J Biophysics_2020060815443996.pdf
[[99]] Szigeti GyP, Szasz O, Hegyi G. (2020) Experiment with personalised dosing of hyperthermia, chapter 15 in book Current topics in medicine and medical research Vol. 3. Ed. by Dr. Shigenori Ito, pp. 140-157, http://bp.bookpi.org/index.php/bpi/catalog/book/232
[[100]] Lee S-Y, Fiorentini G, Szasz AM, Szigeti Gy, Szasz A, Minnaar CA. (2020) Quo vadis oncological hyperthermia (2020)? Frontiers in Oncology, 10:1690, doi: 10.3389/fonc.2020.01690, https://www.frontiersin.org/articles/10.3389/fonc.2020.01690/full
[[101]] Szasz A. (2020) Preface, for the book Challenges and solutions of oncological hyperthermia, ed. Szasz A., pp. 8-13, Cambridge Scholars, https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[[102]] Szasz O. (2020) Local treatment with systemic effect: Abscopal outcome, in book Challenges and solutions of oncological hyperthermia, ed. Szasz A., Ch. 11, pp.192-205, Cambridge Scholars, https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[[103]] Dank M, Balogh A, Benedek A, et al. (2019) Elektromágneses daganatterápiás készülék preklinikai és klinikai vizsgálatai, valamint műszaki továbbfejlesztése: tapasztalatok szolid tumorokkal (Preclinical and clinical investigation and development of electromagnetic oncological device - experience with solid tumors), Magyar Onkológia, 63:354-358, https://www.ncbi.nlm.nih.gov/pubmed/31821390
[[104]] Szasz A. (2019) Thermal and nonthermal effects of radiofrequency on living state and applications as an adjuvant with radiation therapy, Journal of Radiation and Cancer Research, 10:1-17, http://www.journalrcr.org/article.asp?issn=2588-9273;year=2019;volume=10;issue=1;spage=1;epage=17;aulast=Szasz
[[105]] Barich AJ, Daniilidis L, Marangos M. (2018) Oncothermia and the paradigm shift in integrative oncology; Oncothermia Journal 24:373-404, https://oncotherm.com/sites/oncotherm/files/2018-10/Oncothermia_and_the_paradigm_shift.pdf
[[106]] Szasz O, Vincze G, Szigeti GP, Benyo Z, Szasz A. (2018) An allometric approach of tumor-angiogenesis, Medical Hypothesis, 116:74-78, https://www.sciencedirect.com/science/article/pii/S030698771830015X
[[107]] Szasz O, Szasz A. (2018) Modulated electro-hyperthermia (mEHT) From LAB to clinic; Oncothermia Journal 23:24-61, https://oncotherm.com/sites/oncotherm/files/2018-09/Modulated_electro_hyperthermia_mEHT.pdf
[[108]] Szasz A. (2018) Basic principle and new results of Oncothermia; Oncothermia Journal 22:178-205, https://oncotherm.com/sites/oncotherm/files/2018-03/Basic_principle_and_new_results_of_Oncothermi.pdf
[[109]] Roussakow S. (2018) Redefining Hyperthermia: A Not Temperature-Dependent Solution of The Temperature Problem; Oncothermia Journal 22:116-150, https://oncotherm.com/sites/oncotherm/files/2018-03/Redefining_Hyperthermia.pdf
[[110]] Minnaar CA, Kotzen JA, Baeyens A. (2018) Modulated Electro-Hyperthermia: Role in Developing Countries; Oncothermia Journal 22:57-66, https://oncotherm.com/sites/oncotherm/files/2018-03/Modulated_Electro_Hyperthermia.pdf
[[111]] Szasz A. (2018) Local oncothermia treatment fights against systemic malignancy; Oncothermia Journal 22:58-84, https://oncotherm.com/sites/oncotherm/files/2018-03/Local_oncothermia_treatment.pdf
[[112]] Szasz O. (2018) Oncothermia development in Hungary; Oncothermia Journal 22:85-102, https://oncotherm.com/sites/oncotherm/files/2018-03/Oncothermia_development_in_Hungary.pdf
[[113]] Van Rhoon G, Szasz A. (2017) DEBATE treatment planning & thermometry Oncothermia Journal Volume 20:273-276, https://oncotherm.com/sites/oncotherm/files/2017-10/Pages%20from%20Oncothermia%20Journal%20volume%2020-12.pdf
[[114]] Szasz O. (2017) Oncotherm: a company devoted to innovation in oncological hyperthermia from 1988 Oncothermia Journal Volume 20:102-104, https://oncotherm.com/sites/oncotherm/files/2017-10/Pages%20from%20Oncothermia%20Journal%20volume%2020%20v1_0.pdf
[[115]] Szasz A. (2017) Oncothermia is a kind of hyperthermia. Hot topics: temperature, dose, selectivity Oncothermia Journal Volume 20:105-120, https://oncotherm.com/sites/oncotherm/files/2017-10/Pages%20from%20Oncothermia%20Journal%20volume%2020_0.pdf
[[116]] Szigeti GP, Lee DY, Hegyi G. (2017) What is on the horizon for hyperthermic cancer therapy? J Traditional Medicine and Clinical Naturopathy, 6:2, 1000217, https://www.omicsonline.org/open-access/what-is-on-the-horizon-for-hyperthermic-cancer-therapy.php?aid=88372
[[117]] Szasz O., Szasz A. (2016) Nanothermia: A heterogenic heating approach, J Can Res Ther, 12:1132-1137, DOI: 10.4103/0973-1482.197568, https://pubmed.ncbi.nlm.nih.gov/28054524/
[[118]] Shalan N. (2016) Oncothermia: New Method of Tumor Therapy. Oncothermia Journal 18:180-190, https://oncotherm.com/sites/oncotherm/files/2017-07/Oncothermia_-_New_Method_of_Tumor_Therapy.pdf
[[119]] Szigeti GyP, Szasz O, Hegyi G. (2016) Personalised dosing of hyperthermia, Journal of Cancer Diagnosis, 2016, 1:107, https://www.omicsonline.org/open-access/personalised-dosing-of-hyperthermia-.pdf
[[120]] Roussakow SV. (2016) The place and role of clinical hyperthermia in oncological thermotherapy: let’s define what we are talking about. Oncothermia Journal 18:103-115, https://oncotherm.com/sites/oncotherm/files/2017-07/The_place_and_role_of_clinical_hyperthermia_in_oncological_thermotherapy_-_let%27s_define_what_we_are_talking_about.pdf
[[121]] Szasz A. (2016) Quo vadis oncological Hyperthermia Update 2016. Oncothermia Journal 18:12-41, https://oncotherm.com/sites/oncotherm/files/2017-07/Quo_vadis_oncological_Hyperthermia_Update_2016.pdf
[[122]] Szasz O. (2016) Workshop, local hyperthermia. Oncothermia Journal 18:64-102, https://oncotherm.com/sites/oncotherm/files/2017-07/Workshop%2C_local_hyperthermia.pdf
[[123]] Salvin S. (2016) The cancer revolution, Win-win Health Intelligence Limited, http://thecancerrevolution.co.uk/wp-content/uploads/2016/03/Prof-Slavin-CTCI-Appendix-1.pdf
[[124]] Baronzio G, Parmar G, Ballerini M, Szasz A, et al. (2014) A brief overview of hyperthermia in cancer treatment. Journal of Integrative Oncology, 3:1, 115-125, http://www.omicsgroup.org/journals/a-brief-overview-of-hyperthermia-in-cancer-treatment-2329-6771.1000115.php?aid=36581
[[125]] Szasz O, Szasz A. (2014) Oncothermia - Nano-heating paradigm. J Cancer Sci Ther 6:4, http://www.omicsonline.org/open-access/oncothermia-nanoheating-paradigm-1948-5956.1000259.pdf
[[126]] Pang CLK. (2014) The Orientation, Application and Efficacy Evaluation of Hyperthermia in Integrative Natural Therapies of Cancer. Oncothermia Journal 10:15-27, https://oncotherm.com/sites/oncotherm/files/2017-07/The_orientation%2C_application_and_efficacy_evaluation_of_hypethermia.pdf
[[127]] Cakir R. (2014) Ozone Therapy and Combined PRP Applications. Oncothermia Journal 10:35-39, https://oncotherm.com/sites/oncotherm/files/2017-07/Ozone_therapy_and_combined_PRP-applications.pdf
[[128]] Roussakow S. (2014) Hyperthermia: Thermal Trap and Athermal Solution. Oncothermia Journal 10:57-57, https://oncotherm.com/sites/oncotherm/files/2017-07/Hyperthermia_thermal_trap_and_athermal_solution.pdf
[[129]] Hegyi G, Szigeti GP, Szasz A. (2013) Hyperthermia versus oncothermia: Cellular effects in complementary cancer therapy. Evid Based Complement Alternat Med 2013:672873, http://www.hindawi.com/journals/ecam/2013/672873/
[[130]] Szasz A. (2013) "Quo vadis" oncologic hyperthermia? Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 201671, http://www.hindawi.com/archive/2013/201671/
[[131]] Roussakow S. (2013) Critical Analysis Of Electromagnetic Hyperthermia Randomized Trials: Dubious Effect And Multiple Biases. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 412186, http://www.hindawi.com/archive/2013/412186/
[[132]] Roussakow S. (2013) The History Of Hyperthermia Rise And Decline. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 428027, http://www.hindawi.com/archive/2013/428027/
[[133]] Szasz A. (2013) Challenges and Solutions in Oncological Hyperthermia. Thermal Med 29(1):1-23, https://www.jstage.jst.go.jp/article/thermalmed/29/1/29_1/_article
[[134]] Hegyi G, Szasz O, Szasz A. (2013) Oncothermia: A new paradigm and promising method in cancer therapies. Acupuncture and Electro-Therapeutics Res. Int. J. 38:161-197, http://www.ncbi.nlm.nih.gov/pubmed/24494322
[[135]] Mitagravia N, Bicher J, Devdariani M, Davlianidze L, Nebieridze M, Momtselidze N. (2013) Autoregulation of the brain temperature during whole body hyperthermia. Oncothermia Journal 7:62-68, https://oncotherm.com/sites/oncotherm/files/2017-07/Autoregulation_of_the_brain_temperature_during_whole_body_hyperthermia.pdf
[[136]] Schwartz L, Summa M, Steyaert JM, Vergne AG, Baronzio GF. (2013) New cancer paradigm and new treatment: the example of METABLOC. Oncothermia Journal 7:120-125, https://oncotherm.com/sites/oncotherm/files/2017-07/New_cancer_paradigm_and_new_treatment_-_the_example_of_METABLOC.pdf
[[137]] Baronzio GF, Kiselevsky M, Ballerini M, Cassuti V, Schwartz L, Freitas I, Fiorentini G, Parmar G (2013) Hypoxia, Immunity, Metabolism and Hyperthermia. Oncothermia Journal 7:127-131, https://oncotherm.com/sites/oncotherm/files/2017-07/Hypoxia%2C_Immunity%2C_Metabolism_and_Hyperthermia.pdf
[[139]] Andocs G, Meggyeshazi N, Okamoto Y, Balogh L, Kovago Cs, Szasz O. (2013) Oncothermia treatment induced immunogenic cancer cell death. Oncothermia Journal 9:28-37, https://oncotherm.com/sites/oncotherm/files/2017-07/Oncothermia_treatment_induced_immunogenic_cancer_cell_death.pdf
[[140]] Szasz O. (2013) Past, Present and Future of Oncothermia. Oncothermia Journal 9:55-69, https://oncotherm.com/sites/oncotherm/files/2017-07/Past%2C_Present_and_Future_of_Oncothermia.pdf
[[141]] Szasz O. (2013) Burden of oncothermia – Why is it special? Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 938689, http://www.hindawi.com/archive/2013/938689/
[[142]] Szasz O. (2013) Renewing Oncological Hyperthermia-Oncothermia. Open Journal of Biophysics, 3:245-252, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=38154
[[143]] Szasz O. (2013) Essentials of oncothermia. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 159570, http://www.hindawi.com/archive/2013/159570/
[[144]] Szigeti GyP, Hegyi G, Szasz O. (2013) Hyperthermia versus oncothermia: Cellular effects in cancer therapy. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 274687, http://www.hindawi.com/journals/ecam/2013/672873/
[[145]] Douwes FR. (2012) Cancer Treatment Approach at St. George Hospital. Oncothermia Journal 6:34-45, https://oncotherm.com/sites/oncotherm/files/2017-07/Cancer_treatment_approach_at_St._George_Hospital.pdf
[[146]] Douwes FR. (2012) Is an Integrative Cancer Therapy Concept (ICTC) the answer to improve the present situation in cancer care? Oncothermia Journal 6:27-32, https://oncotherm.com/sites/oncotherm/files/2017-07/Is_an_integrative_cancer_therapy_concept_%28ICTC%29_the_answer.pdf
[[147]] Szasz A. (2011) The Oncotherm story in personal view (History of modulated electro-hyperthermia). Oncothermia Journal 4:31-61, https://oncotherm.com/sites/oncotherm/files/2017-07/The_oncotherm_story_in_personal_view.pdf
[[148]] Herzog A. (2011) „Hyperthermie: Wo bleibt die Evidenz?“ Oncothermia Journal 2:19-26, https://oncotherm.com/sites/oncotherm/files/2017-07/Hyperthermie_-_wo_bleibt_die_evidenz.pdf
[[149]] Andocs G, Szasz O, Szasz A. (2009) Oncothermia treatment of cancer: from the laboratory to clinic. Electromagn Biol Med 28(2):148–165, http://www.ncbi.nlm.nih.gov/pubmed/19811397
[[150]] Szasz A. (2008) Oncothermie. OM & Ernährung Fachinformation, Nr.123, F22-F23
[[151]] Andocs G. (2008) Front page illustration of Forum Medizine. Forum Hyperthermia, 1/10, Forum Medizin
[[152]] Szasz A. (2008) Traditionen und Reformen in der onkologischen Hyperthermie. Forum Hyperthermie 3:20-21, https://www.researchgate.net/publication/275828111_Traditionen_und_Reformen_in_der_onkologischen_Hyperhtermie
[[153]] Szasz A. (2007) What is against the acceptance of hyperthermia treatment? Forum Hyperthermie 144:3-7
[[154]] Douwes FR. (2006) Hyperthermie in der Tumortherapie. Natum, Mitteilungen 6, 2006
[[155]] Hager ED, Birkenmeier J, Popa C. (2006) Hyperthermia in oncology: A promising new method?, Translation of publication of Deutsche Zeitschrift für Onkologie, 38:100-107
[[156]] Fiorentini G, Szasz A. (2006) Hyperthermia today: electric energy, a new opportunity in cancer treatment. J Cancer Res Ther 2(2):41–46, http://www.ncbi.nlm.nih.gov/pubmed/17998673
[[157]] Douwes FR. (2006) Hyperthermie in der Tumortherapie. Natum, Mitteilungen 6, 2006
[[158]] Szasz A. (2006) What is against the acceptance of hyperthermia? Die Naturheilkunde Forum-Medizine 83:3–7
[[159]] Szasz A, Szasz N, Szasz O. (2004) Hyperthermie in der Onkologie: eine aktuell beforschte Behandlungsmethode. Integrative Onkologie 1: 19-27
[[160]] Szasz A, Szasz O, Szasz N. (2004) New Results, New Hopes. Indian Association for Hyperthermic Oncology and Medicine 2. pp. 1-5
[[161]] Szasz A. (2003) Elektromagnetische Hyperthermieverfahren: die kapazitive Kopplung. Forum Komplementare Onkologie Hyperthermie, 4:III–IX, http://studylibde.com/doc/3026289/elektromagnetische-hyperthermieverfahren--die-kapazitive-...
[[162]] Szasz A, Szasz N, Szasz O. (2003) Hyperthermia for Oncology: An effective new treatment modality. Integrative Onkologie 1: 1-13
[[163]] Szasz A, Szasz N, Szasz O. (2003) Hyperthermie in der Onkologie mit einem historischen Überblick. Deutche Zeitschrift für Onkologie 35: 140-154, https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2003-43178
[[164]] Szasz A, Szasz O, Szasz N. (2002) Onkotermia fizika a rák ellen. Fizikai szemle 52(2):45-52
[[165]] Szasz A, Szasz O, Szasz N. (2001) Electro-hyperthermia: a new paradigm in cancer therapy. Deutsche Zeitschrift für Onkologie 33:91–99, http://real.mtak.hu/6593/
[[166]] Szasz A, Szasz O, Szasz N. (2001) Hipertermia az onkológiában: onkotermia. Medius Anonymus 11(9):32-33, http://real.mtak.hu/6594/
[[167]] Douwes FR. (2000) Too hot for cancer. Alternative Medicine 37:1-2
[[168]] Szasz A. (1999) Komparative, retrospektive klinische Studie in Bezug auf mit Onkothermie behandelten Bauchspeicheldrüsenkrebs. pp. 1-7
[[169]] Szendro P, Szasz A, Szoke Sz. (1998) Az ezerarcú víz. Öntözés Gazdálkodás 36:3-10
[[170]] Szendro P, Szasz A, Szoke Sz. (1998) The myriad-minded water. Hungarian Agricultural Engineering 11:17-20
[[171]] Hager ED. (1998) Stellenwert der Hyperthermie in der Onkotherapie. Forschung und Praxis, Gesundes Leben 1/98
[[172]] Hager ED. (1997) Formen der Hyperthermie und klinische Ergebnisse. Z. Onkol. / J. of Oncol. 29(3):78-83
[[173]] Herzog A. (2013) Lokale Hyperthermie wissenschaftliche und wirtschaftliche Aspekte und ihr Einfluss auf die Kostenübernahme durch die Krankenkasse. Oncothermia Journal 9:47-53, https://oncotherm.com/sites/oncotherm/files/2017-07/Lokale_Hyperthermie_wissenschaftliche_und_wirtschaftliche_Aspekte.pdf
[[174]] Breitkreutz F. (2013) Elektrohyperthermie: Erstattungfähingkeit und korrekte Abrechnung an aktuellen Beispielen aus der Rechtsprechung. Oncothermia Journal 9:39-39, https://oncotherm.com/sites/oncotherm/files/2017-07/Elektrohyperhtermie_Erstattungfahingkeit_und_korrekte_Abrechnung_an_aktuellen_Beispielen_aus_der_Rechtsprechung.pdf
[[175]] Krautkramer S. (2012) Neue Herausforderungen im Praxis- und Klinikmanagement: Prozessoptimierung durch echtes Factoring. Oncothermia Journal 5:67-71, https://oncotherm.com/sites/oncotherm/files/2017-07/Neue_herausforderungen_im_praxis-%20und_klinikmanagement.pdf http://www.oncothermia-journal.com/journal/2012/Neue_herausforderungen_im_praxis-%20und_klinikmanagement.pdf
[[176]] Breitkreutz F. (2012) Regionale Elektrohyperthermie: Ordnungsgemäße Abrechnung und Erstattungsfähigkeit. Oncothermia Journal 6:55-66, https://oncotherm.com/sites/oncotherm/files/2017-07/Regionale_elektrohyperthermie_-_ordnungsgemasse_abrechnung_und_erstattungsfahigkeit.pdf
[[177]] Breitkreutz F. (2011) Die Erstattungsfähigkeit hyperthermischer Behandlungen durch die GKV – Anspruch und Wirklichkeit nach dem Nikolaus – Beschluss des BVerfG. Oncothermia Journal 2:41-49, https://oncotherm.com/sites/oncotherm/files/2017-07/Die_Erstattungsfahigkeit_hyperthermischer_behandlungen.pdf
[[179]] Gierthmühlen S. (2011) Die Abbildung komplementarer Therapien im deutschen Gesundheitssystem-Kostenübernahme durch GKV und PKV. Oncothermia Journal 4:16-19, https://oncotherm.com/sites/oncotherm/files/2017-07/Die_Abbildung_komplementarer_Therapien_im_deutschen.pdf http://www.oncothermia-journal.com/journal/2011/Die_Abbildung_komplementarer_Therapien_im_deutschen.pdf
[[180]] Breitkreutz F. (2011) Hyperthermie-Erstattung durch die GKV – Ein Überblick über die aktuelle Rechtsprechung anhand von vier Entscheidungen aus den Monaten August und September 2011. Oncothermia Journal 4:26-29, https://oncotherm.com/sites/oncotherm/files/2017-07/Hyperthermie-erstattung_durch_die_GKV_-_ein_uberblick.pdf
[[181]] Hegyi G, Vincze Gy, Szasz A. (2020) Thermodynamic description of living homeostasis, Chapter 10 in book New insights into physical science vol. 1, ed. Dr. Thomas F. George, Book Publisher International, pp. 1-13, http://www.bookpi.org/bookstore/product/new-insights-into-physical-science-vol-1/
[[182]] Szasz O. (2020) Development in oncological hyperthermia, Chapter 11 in book New insights into physical science vol. 1, ed. Dr. Thomas F. George, Book Publisher International, pp. 1-13, http://www.bookpi.org/bookstore/product/new-insights-into-physical-science-vol-1/
[[183]] Szasz A. (2020) Challenges and solutions of oncological hyperthermia, Cambridge Scholars Publishing, ISBN-13: 978-5275-4817-6, https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[[184]] Chi K-H. (2019) Rescuing your own cancer: changing the microenvironment of the tumor to overcome cancer with self-healing. Times Publishing
[[185]] Lee D, Szasz A. (2016) Heat therapy in oncology, New paradigm in electro-hyperthermia, Kim Jei Min Publishing, ISBN: 979-11-958291-0-1 13510
[[186]] Pang CLK. (2015) Hyperthermia in oncology, CRC Press, https://www.crcpress.com/Hyperthermia-in-Oncology/Pang/p/book/9781498714464
[[187]] Szasz A. (2015) Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia. In: Paul J. Rosch (ed) Bioelectromagnetic and subtle energy medicine, pp. 323-336, CRC Press, Taylor & Francis Group
[[188]] Szasz A. (2013) Electromagnetic effects in nanoscale range. Cellular Response to Physical Stress and Therapeutic Applications (eds. Tadamichi Shimizu, Takashi Kondo), chapter 4., pp. 55-81. Nova Science Publishers, Inc
[[189]] Szasz A, Iluri N, Szasz O. (2013) Local hyperthermia in Oncology – To Choose or not to Choose? A chapter in book: Hyperthermia, Ed: Huilgol N, ISBN 980-953-307-019-8, InTech, Ch.1. pp.1-82; http://www.intechopen.com/books/hyperthermia/local-hyperthermia-in-oncology-to-choose-or-not-to-choose-
[[190]] Szasz A, Morita T. (2012) Heat Therapy in oncology, New paradigm in Hyperthermia. Nippon Hvoronsha, Tokyo, Japan
[[191]] Szasz A, Szasz N, Szasz O. (2010) Oncothermia – Principles and practices. Springer Science, Heidelberg, http://www.springer.com/gp/book/9789048194971
[[192]] Szasz A, Szasz O, Szasz N. (2006) Physical background and technical realization of hyperthermia. In: Baronzio GF, Hager ED (eds) Hyperthermia in Cancer Treatment: A primer, Ch. 3., Springer, New York, NY, pp 27–59
[[193]] Danics L. (2021) Antitumor effects of modulated electro-hyperthermia in 4T1 triple-negative breast cancer models, Semmelweis University, Doctoral School of Theoretical and Translational Medicine, PhD thesis, https://doktori.hu/index.php?menuid=193&lang=HU&vid=23552, DOI:10.14753/SE.2021.2606
[[194]] Jeremiah TM. (2021) Mechanism of modulated electro-hyperthermia induced tumor growth suppression in B16F10 melanoma pulmonary metastases, Semmelweis University, Theoretical and Translational Medicine Doctoral School, PhD thesis, https://doktori.hu/index.php?menuid=193&lang=HU&vid=23593
[[195]] Vancsik T. (2020) Mechanism of modulated electro-hyperthermia induced tumor destruction in C26 colorectal cancer models, Semmelweis University, Doctoral School of Pathological Sciences, PhD thesis, https://doktori.hu/index.php?menuid=193&lang=HU&vid=21105
[[196]] Kovago Cs. (2016) Investigations on bovine viral diarrhea virus and some of the disease forms caused by the infection, Szent Istvan University, PhD Thesis
[[197]] Lim EJ. (2016) Developments into electromagnetic stimulation of neural cells, The University of Sydney, thesis
[[198]] Meggyeshazi N. (2015) Studies on modulated electrohyperthermia induced tumor cell death in a colorectal carcinoma model, Pathological Sciences Doctoral School, Semmelweis University, thesis, http://repo.lib.semmelweis.hu/handle/123456789/3956
[[199]] Andocs G. (2015) Preclinical investigation on the biological effects of modulated electro-hyperthermia, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, thesis
[[200]] Fiorentini G. (2013-14) Studio dei meccanismi fisiopatologici dell’ipertermia oncologica e dell’oncothermia, Alma Mater Studiorum-Universita’ Di Bologna, thesis, https://amslaurea.unibo.it/7878/
[[201]] Szasz N. (2003) Electric field regulation of chondrocyte proliferation, biosynthesis, and cellular signaling, Massachusetts Institute of Technology, thesis
[[202]] Szasz O, Szasz A. (2021) Approaching complexity: Hyperthermia dose and its possible measurement in oncology, OPEN J BIOPHYSICS, 11, 68-132, https://doi.org/10.4236/Open J Biophysics.2021.111002
[[203]] Lee S-Y, Szigeti GP, Szasz AM. (2019) Oncological hyperthermia: The correct dosing in clinical applications, Int. J. Oncology, 54: 627-643, https://www.spandidos-publications.com/10.3892/ijo.2018.4645#
[[204]] Szasz O. (2019): Efficacy and dose of local hyperthermia, Oncothermia Journal 27: 29-41, https://oncotherm.com/sites/oncotherm/files/2020-02/Efficacy_and_dose_of_local_hyperthermia.pdf
[[205]] Szasz O, Szigeti GyP, Vancsik T, Szasz A. (2018) Hyperthermia dosing and depth of effect, Open Journal of Biophysics, 2018, 8, 31-48, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=81896
[[206]] Orczy-Timko B. (2018): Performance comparison of electro-hyperthermia devices: EHY-2000plus and EHY-2030; Oncothermia Journal 24:333-343, https://oncotherm.com/sites/oncotherm/files/2018-10/Performance_comparison.pdf
[[207]] Prasad B, Ha YH, Lee SK, Kim JK. (2016) Patient-specific simulation for selective liver tumor treatment with noninvasive radiofrequency hyperthermia, Journal of Mechanical Science and Technology, 30(12): 5837-5845, DOI:10.1007/S12206-016-1154-X, https://www.springerprofessional.de/en/patient-specific-simulation-for-selective-liver-tumor-treatment-/12017486
[[208]] Szasz O, Szigeti GyP, Szasz A. (2016) Connections between the specific absorption rate and the local temperature. Open Journal of Biophysics 6:53-74; http://file.scirp.org/pdf/OPEN J BIOPHYSICS_2016063014260548.pdf
[[209]] Szasz O, Szasz A. (2016) Heating, efficacy and dose of local hyperthermia. Open Journal of Biophysics, 6:10-18, http://www.scirp.org/journal/PaperInformation.aspx?paperID=62874
[[210]] Vincze Gy, Szasz O, Szasz A. (2015) Generalization of the thermal dose of hyperthermia in oncology, Open Journal of Biophysics 5(4):97-114, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=60654
[[211]] Vincze Gy, Szasz A. (2015) Critical analysis of the thermodynamics of reaction kinetics. Journal of Advances in Physics 10(1):2538-2559, https://cirworld.com/index.php/jap/article/view/1340
[[212]] Szasz A. (2007) Hyperthermia, a Modality in the Wings. J Cancer Res Ther 3(1):56–66, http://www.ncbi.nlm.nih.gov/pubmed/17998724
[[213]] Szasz A, Vincze Gy. (2006) Dose concept of oncological hyperthermia: Heat-equation considering the cell destruction. J Cancer Res Ther 2(4):171–181, http://www.ncbi.nlm.nih.gov/pubmed/17998700
[[214]] Szasz O, Szigeti GP, Szasz A. (2019) The intrinsic self-time of biosystems, OPEN J BIOPHYSICS, 9, 131-145, https://file.scirp.org/pdf/OPEN J BIOPHYSICS_2019040815291683.pdf
[[215]] Szasz O, Szigeti GyP, Szasz A. (2017) On the self-similarity in biological processes, OPEN J BIOPHYSICS, 7(4):183-196, http://file.scirp.org/pdf/OPEN J BIOPHYSICS_2017090715550515.pdf
[[216]] Hegyi G, Vincze Gy, Szasz A. (2012) On the Dynamic Equilibrium in Homeostasis. Open Journal of Biophysics 2:64-71, http://file.scirp.org/pdf/OPEN J BIOPHYSICS20120300001_81525786.pdf
[[217]] Szasz A, Szendro P, Vincze Gy, et al. (2007) Study of the oxygen mass transfer in a gas-dispersing apparatus. Hungarian Agricultural Engineering &: 23-25
[[218]] Vincze Gy, Szigeti GyP, Szasz O. (2016) Negative impedance interval of blood flow in capillary bed. Journal of Advances in Physics, 11(6):3482-3487, https://cirworld.com/index.php/jap/article/view/365
[[219]] Vincze Gy, Szigeti GyP, Szasz O. (2016) Non-Newtonian analysis of blood-flow. Journal of Advances in Physics, 11(6):3470-3481, https://cirworld.com/index.php/jap/article/view/6834
[[220]] Szasz A, Szasz O, Vincze Gy, et al. (2009) Non-Mechanical Energy Transfer of Electrically Neutral Electrolytes. Mechanical Engineering Letters 3:180-187
[[221]] Szasz A, Szasz O, Szasz N. (2001) Hyperthermic radiology. Why to combine? Strahlentherapie und Onkologie 177:110-110, http://real.mtak.hu/6605/
[[222]] Zaffaroni N, Fiorentini G, De Giorgi U. (2001) Hyperthermia and hypoxia: new developments in anticancer chemotherapy; Eur J Surg Oncol 27:340-342, http://www.ncbi.nlm.nih.gov/pubmed/11417976
[[223]] Szasz A. (2023) Memristor hypothesis in malignant charge distribution, Open Journal of Biophysics, 13, 51-92, https://doi.org/10.4236/Open J Biophysics.2023.134005
[[224]] Szasz A. (2022) Cancer specific resonances, Open Journal of Biophysics, 12, 185-222, https://doi.org/10.4236/Open J Biophysics.2022.124009
[[225]] Szasz A. (2022) Time-fractal modulation – Possible modulation effects in human therapy, Open Journal of Biophysics, 12, 38-87, https://www.scirp.org/journal/paperinformation.aspx?paperid=114597
[[226]] Szasz A. (2021) Bio-electromagnetics without fields: The effect of the vector potential, OPEN J BIOPHYSICS, 11, 205-224, https://doi.org/10.4236/Open J Biophysics.2021.112007
[[227]] Szasz O. (2019) Bioelectromagnetic paradigm of cancer treatment – Modulated electro-hyperthermia (mEHT), OPEN J BIOPHYSICS, 9, 98-109, https://file.scirp.org/pdf/OPEN J BIOPHYSICS_2019022616103729.pdf
[[228]] Szasz O, Szigeti GyP, Szasz A, Benyo Z. (2018) Role of electrical forces in angiogenesis, OPEN J BIOPHYSICS, 8, 49-67, https://www.scirp.org/journal/paperinformation.aspx?paperid=83546
[[229]] Szasz O, Szigeti GyP, Szasz AM. (2017) Electrokinetics of temperature for development and treatment of effusions, Advances in Bioscience and Biotechnology, 8:434-449, https://www.scirp.org/journal/PaperInformation.aspx?PaperID=80707
[[230]] Vincze Gy, Szasz A. (2015) Reorganization of actin filaments and microtubules by outside electric field, Journal of Advances in Biology 8(1):1514-1518
[[231]] Szasz A. (2014) Oncothermia: Complex therapy by EM and fractal physiology, XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), IEEE Xplore 20 October 2014, DOI: 10.1109/URSIGASS.2014.6930100, https://ieeexplore.ieee.org/document/6930100
[[232]] Andocs G, Vincze Gy, Szasz O, Szendro P, Szasz A. (2009) Effect of Curl-Free Potentials on Water. I Electromagn Biol Med 28(2):166–181, http://www.ncbi.nlm.nih.gov/pubmed/19811398
[[233]] Szasz A, Vincze Gy, Andocs G, Szasz O. (2009) Do Field-Free Electromagnetic Potentials Play a Role in Biology?. Electromagn Biol Med 28(2):135–147, http://www.ncbi.nlm.nih.gov/pubmed/19811396
[[234]] Hegyi G, Vincze Gy, Szasz A. (2007) Axial vector interaction with bio-systems. Electr Biol Med 26(2):107–118, http://www.ncbi.nlm.nih.gov/pubmed/17613038
[[235]] Vincze Gy, Szasz A, Szasz N. (2005) On the thermal noise limit of cellular membranes. Bioelectromagnetics 26(1):28–35, http://www.ncbi.nlm.nih.gov/pubmed/15605404
[[236]] Szendro P, Szasz A. (2005) Bioelectromagnetic interactions in agriculture: Controversial positions. Bulletin of the Szent István University - Gödöllő 2:173-206
[[237]] Szasz N, Szasz O. (2005) Device and procedure for measuring and examining the signal of systems releasing measurable signal during operation or in response to external excitation. Forum Komplementaire Onkologie 4:3-9
[[238]] Szendro P, Koltay J, Vincze Gy, Szasz A, et al. (1999) Industrial device for stimulating seeds. Hungarian Agricultural Engineering 12:51-52
[[239]] Szendro P, Koltay J, Szasz A et al. (1999) Is the structure of the water convertible in physical way? Hungarian Agricultural Engineering 12:43-45
[[240]] Szendro P, Koltay J, Vincze Gy, Szasz A, et al. (1999) Üzemi berendezés vetőmagvak stimulációjára. Mezőgazdasági Technika 40:(9)10-12
[[241]] Szasz A. (2021) The capacitive coupling modalities for oncological hyperthermia, Open Journal of Biophysics, 11, 252-313, https://www.scirp.org/journal/Open J Biophysics
[[242]] Wust P, Nadobny J, Zschaeck S, Ghadjar P. (2020) Physics of hyperthermia – Is physics really against us?, in book Challenges and solutions of oncological hyperthermia, ed. Szasz A., Ch. 16, pp. 346-376, Cambridge Scholars, https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[[243]] Szasz A, Szasz O. (2020) Time-fractal modulation of modulated electro-hyperthermia (mEHT), in book Challenges and solutions of oncological hyperthermia, ed. Szasz A., Ch. 17, pp.377-415, Cambridge Scholars, https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[[244]] Ferenczy GL, Szasz A. (2020) Technical challenges and proposals in oncological hyperthermia, in book Challenges and solutions of oncological hyperthermia, ed. Szasz A., Ch. 3, pp. 72-90, Cambridge Scholars, https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[[245]] Szasz A, Szasz O. (2018) Time-fractal modulation of modulated electro-hyperthermia (mEHT), Oncothermia Journal 24:318-332, https://oncotherm.com/sites/oncotherm/files/2018-10/Time_fractal_modulation.pdf
[[246]] Vincze Gy, Szasz A. (2015) Effect of cellular membrane resistivity inhomogeneity on the thermal noise-limit, Journal of Advances in Physics, Vol. 11, No. 4, 3170-3183, http://paper.researchbib.com/view/paper/76617
[[247]] Vincze Gy, Szasz A, Liboff AR. (2008) New Theoretical Treatment of Ion Resonance Biological Phenomena. Bioelectromagnetics 29(5):380-386, http://www.ncbi.nlm.nih.gov/pubmed/18288680
[[248]] Szasz A, Vincze Gy, Szasz O, Szasz N. (2003) An energy analysis of extracellular hyperthermia. Magneto- and electro-biology 22(2):103–115, http://www.tandfonline.com/doi/abs/10.1081/JBC-120024620
[[249]] Vincze Gy, Szendro P, Szasz A, et al. (2003) Heat penetration into the cell wall. Acta Technologica Agriculturae 6:(3)68-72
[[250]] Szendro P, Vincze Gy, Szasz A. (1999) Response of bio-systems on white noise excitation. Hungarian Agricultural Engineering 12:31-32
[[251]] Szendro P, Vincze Gy, Szasz A. (1998) Origin of pink-noise in bio-systems. Hungarian Agricultural Engineering 11: 42-43
[[252]] Szasz A, D van Noort, Scheller A, et al. (1994) Water states in living systems. I. Structural aspects, Physiol. Chem. Phys. 26(4), 299–322, http://www.ncbi.nlm.nih.gov/pubmed/7700980
[[253]] Szasz O, Szasz A.M. Minnaar C, Szasz A. (2017) Heating preciosity - trends in modern oncological hyperthermia. Open Journal of Biophysics 7:116-144, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=77458
[[254]] Papp E, Vancsik T, Kiss E, Szasz O. (2017) Energy absorption by the membrane rafts in the modulated electro-hyperthermia (mEHT), Open Journal of Biophysics, 7, 216-229, https://file.scirp.org/pdf/OPEN J BIOPHYSICS_2017102715065328.pdf
[[255]] Dank M, Meggyeshazi N, Szigeti Gy, Andocs G. (2016) Immune effects by selective heating of membrane rafts of cancer-cells, ASCO Annual Meeting, abstr: e14571, https://meetinglibrary.asco.org/record/124231/abstract
[[256]] Szasz O, Andocs G, Kondo T, et.al. (2015) Heating of membrane raft of cancer-cells, ASCO Annual Meeting, J Clin Oncol 33, (suppl, abstr e22176), http://meetinglibrary.asco.org/content/151213-156
[[257]] Vincze Gy, Szigeti Gy, Andocs G, Szasz A. (2015) Nanoheating without Artificial Nanoparticles, Biology and Medicine 7(4):249, http://www.omicsonline.com/open-access/nanoheating-without-artificial-nanoparticles-0974-8369-1000249.php?aid=61783
[[258]] Szasz A. (2013) Electromagnetic effects in nanoscale range. Cellular Response to Physical Stress and Therapeutic Applications (eds. Tadamichi Shimizu, Takashi Kondo), chapter 4. Nova Science Publishers, Inc
[[259]] Szigeti GP, Szasz O, Hegyi G. (2017) Connections between Warburg’s and Szentgyorgyi’s Approach about the Causes of Cancer. Journal of Neoplasm 1(2:8):1-13; http://neoplasm.imedpub.com/connections-between-warburgs-and-szentgyorgyis-approach-about-thecauses-of-cancer.pdf
[[260]] Vincze Gy, Sziget GyP, Szasz A. (2016) Reorganization of the cytoskeleton. Journal of Advances in Biology 9(2):1872-1882; https://cirworld.com/index.php/jab/article/view/4059
[[261]] Saupe H, Szigeti GyP, Andocs G. (2016) Why modulated electrohyperthermia (mEHT) destroys the rouleaux formation of erythrocytes? Journal of Advances in Biology 9(3):1945-1955; http://paper.researchbib.com/view/paper/111077
[[262]] Andocs G, Meggyeshazi N, Okamoto Y, Balogh L, Szasz O. (2013) Bystander Effect of Oncothermia. Hindawi Publishing Corporation Conference Papers in medicine, Volume 2013, Article ID 953482; http://www.hindawi.com/archive/2013/953482/
[[263]] Saupe H, Buettner C, Andocs G, Szasz A. (2011) Why does Oncothermia destroy the rouleaux formed erythrocytes? Oncothermia Journal, 2:57-58, https://oncotherm.com/oncothermia-journal/oncothermia-journal-volume-2
[[264]] Zsoldos I, Szendro P, Watson L, Szasz A. (2001) Topological Correlation in amorphous structures. Comp Mater Sci 20(1):28–36, http://www.sciencedirect.com/science/article/pii/S0927025600001208
[[265]] Zsoldos I, Szasz A. (1999) Appearance of collectivity in two-dimensional cellular structures. Comp Material Science 15(4):441–448, http://www.sciencedirect.com/science/article/pii/S0927025699000312
[[266]] Zsoldos I, Szasz A. (1999) From Random Cellular Structure to the Honeycomb Pattern. J Hungarian Agricultural Research 3:9-11
[[267]] Zsoldos I, Szasz A. (1999) From two dimensional cellular structures to the honeycomb pattern. Hungarian Agricultural Research 3:9-14
[[268]] Zsoldos I, Szasz A. (1999) Háromdimenziós sejtrendszerek topológiai összefüggései. Gépgyártástechnológia 1:27-35, http://real.mtak.hu/6576/
[[269]] Zsoldos I, Janik J, Szasz A. (1999) Topological aspects of ordering: Proceeding of the 7th Seminar of IFHT Heat Treatment Surface Engineering of Light Alloys. Engineering of Light Alloys pp. 343-343.
[[270]] Szasz O, Vincze Gy, Szigeti GyP, Szasz A. (2017) Intrinsic Noise Monitoring of Complex Systems, OPEN J BIOPHYSICS, 7, 197-215, http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=79028
[[271]] Maryan M, Szasz A, Szendro P, et al. (2005) Synergetic model of the formation of non-crystalline structures. Journal of Non-Crystalline Solids 351(2):189–193; http://www.sciencedirect.com/science/article/pii/S002230930400897X
[[272]] Zsoldos I, Reti T, Szasz A. (2004) On the topology of 2D polygonal and generalized cell systems. Computational Materials Science 29:119-130; http://www.sciencedirect.com/science/article/pii/S0927025603001800
[[273]] Vincze Gy, Zsoldos I, Szasz A. (2004) On the Aboav-Weaire law. J Geomet Phys 51(1):1–12, http://www.sciencedirect.com/science/article/pii/S0393044003001335
[[274]] Marjan M, Kikineshi A, Szendro P, Szasz A. (2001) Modelling of the dissipative structure of water. Acta Technologica Agriculturae 4:(3)77-80
[[275]] Maryan MI, Kikineshi AA, Szasz A. (2001) Self-organizing processes and dissipative structure formation in the non-crystalline materials. Phys Chem Stat Sol 2(4):585–593
[[276]] Maryan M, Kurik M, Kikineshy A, Watson LM, Szasz A. (1999) A synergetic representation for the double-structure model of liquid water. Ukrainskii Fizicheskii Zhurnal 44:1227-1232, http://real.mtak.hu/6591/
[[277]] Maryan M, Kurik M, Kikineshy A, Watson LM, Szasz A. (1999) Two-structure model of liquid water. Modelling and Simulation in Materials Science and Engineering 7:321-331, http://real.mtak.hu/6575/
[[278]] Szasz A, Kertesz L, Aysawy MA, et al. (1991) Correlation between the structural and electronic stability factors. Journal of Non-Crystalline Solids 130:211-216; http://www.sciencedirect.com/science/article/pii/002230939190457H
[[279]] Szasz A. (1991) Electronically Driven Short-Range Lattice Instability: Possible Role in Superconductive Pairing. Journal of Superconductivity 4(1):3-15; https://link.springer.com/article/10.1007/BF00618292
[[280]] Szasz A. (1990) A short-range electronic instability in high Tc superconductors. In: Zipper E, Manka R, Maska M (eds) Strongly Correlated Electron systems & High-Tc superconductivity, World Scientific, Singapore, pp. 168-245, http://real.mtak.hu/6365/
[[281]] Pan X, Szasz A, Fabian DJ. (1989) Fractal models for the autocatalytic growth of amorphous thin films. Journal of Applied Physics 66:146-151; http://aip.scitation.org/doi/abs/10.1063/1.343894
[[282]] Szasz A, Fabian DJ, Janosi IM. (1989) Close-packed Frank-Kasper coordination and high critical temperature superconductivity. Periodica Polytechnica-Chemical Engineering 34(1-3):163-171; http://www.pp.bme.hu/ch/article/viewFile/2720/1825
[[283]] Szasz A, Fabian DJ. (1988) On electronic structure and metastability. Solid State Communications 65(10):1085-1088; http://real.mtak.hu/6320/
[[284]] Szasz A, Fabian DJ. (1988) Correlation of metastability, icosahedral symmetry and high-critical-temperature superconductivity. Physica C - Superconductivity and Its Applications 153-155:1205-1206; http://www.sciencedirect.com/science/article/pii/0921453488902432
[[285]] Szasz A. (1987) The exact solution of the real square-lattice-gas system. Physica Status Solidi 140:415-420; http://real.mtak.hu/6317/1/1183025.pdf
[[286]] Demidenko VS, Szasz A, Aysawi MA. (1987) On the model calculation of the excitonic-like states and their possible role in autocatalytic processes. Physica Status Solidi 140:121-126; http://onlinelibrary.wiley.com/doi/10.1002/pssb.2221400112/abstract
[[287]] Szasz A. (1985) One possible analytical approximation of the critical point of the three-dimensional ising model. Physica Status Solidi 130(2):K97-K100; http://onlinelibrary.wiley.com/doi/10.1002/pssb.2221300250/abstract
[[288]] Batirev IG, Katsnelson AA, Kertesz L, Szasz A. (1980) Coherent potential approximation of the relationship between short-range order and the position of the fermi level on the state density curves. Physica Status Solidi 100:479-485; http://onlinelibrary.wiley.com/doi/10.1002/pssb.2221000212/abstract
[[289]] Mühlberg K. (2021): Impedance matching and its consequences for modulated electro hyperthermia, initial publication: Oncothermia Journal 30: 83 – 104, https://oncotherm.com/sites/oncotherm/files/2021-04/Muhlberg_Impedance_1.pdf
[[290]] Mühlberg K. (2021): Power transmission of EHY-2000 – A Hypothesis, initial publication: Oncothermia Journal 30: 104 – 116, https://oncotherm.com/sites/oncotherm/files/2021-04/Muhlberg_Power_1.pdf
[[291]] Vincze Gy, Szasz A. (2016) Notes on psychophysics. Journal of Advances in Biology 9(1):1756-1760; https://rajpub.com/index.php/jab/article/view/4400
[[292]] Szasz O, Szasz A. (2016) Considering skin physiology in capacitive-coupled hyperthermia. Journal of Advances in Physics 11(9):3966-3972; https://cirworld.com/index.php/jap/article/view/206
[[293]] Szasz O, Andocs G, Meggyeshazi N. (2013) Oncothermia as personalized treatment option. Hindawi Publishing Corporation Conference Papers in Medicine, Volume 2013, Article ID 2941364, http://www.hindawi.com/archive/2013/941364/
[[294]] Pang CLK. (2013) Progress of research of hyperthermia integration with TCM in the treatment of cancer. Oncothermia Journal 7:36-42, https://oncotherm.com/sites/oncotherm/files/2017-07/Progress_of_research_of_hyperthermia_integration_with_TCM_in_the_treatment_of_cancer.pdf
[[295]] Hegyi G, Bingsheng H, Ji’an L, Szasz O, Szasz A. (2012) Oncothermia and traditional Chinese medicine. Oncothermia Journal 5:77-93, https://oncotherm.com/sites/oncotherm/files/2017-07/Oncothermia_and_traditional_Chinese_medicine.pdf
[[296]] Douwes FR. (2012) Is an Integrative Cancer Therapy Concept (ICTC) the answer to improve the present situation in cancer care? Oncothermia Journal 6:27-32, https://oncotherm.com/sites/oncotherm/files/2017-07/Is_an_integrative_cancer_therapy_concept_%28ICTC%29_the_answer.pdf
[[297]] Szasz AM, Lorant G, Szasz A, Szigeti Gy. (2023) The immunogenic connection of thermal and nonthermal molecular effects in modulated electro-hyperthermia, Open Journal of Biophysics, 13, 103-142, https://doi.org/10.4236/Open J Biophysics.2023.134007
[[298]] Szasz A. (2022) Time-fractal in living objects, Open J Biophysics, 12, 1-26, https://doi.org/10.4236/Open J Biophysics.2022.121001
[[299]] Szasz A. (2021) Allometric scaling by the length of the circulatory network, Open J Biophysics, 11, 359-370, https://www.scirp.org/journal/Open J Biophysics
[[300]] Szasz O, Szasz AM, Szigeti GP, Szasz A. (2020) Data mining and evaluation of single arm clinical studies, Chapter 2 in book Recent developments in engineering research Vol. 3. Ed. by Dr. Yong X. Gan, pp. 15-74, http://www.bookpi.org/bookstore/product/recent-developments-in-engineering-research-vol-3/
[[301]] Szasz O, Szasz A. (2020) Parametrization of survival measures, Part I: Consequences of self-organizing, Int J Clinical Medicine, 11, 316-347, https://www.scirp.org/journal/paperinformation.aspx?paperid=100454
[[302]] Szasz A, Szigeti GyP, Szasz AM. (2020) Parametrization of survival measures, Part II: Single arm studies, Int J Clinical Medicine, 11, 348-373, https://www.scirp.org/journal/paperinformation.aspx?paperid=100456
[[303]] Szasz A, Szigeti GyP, Szasz AM. (2020) Parametrization of survival measures, Part III: Clinical evidences in single arm studies with endpoint of overall survival, Int J Clinical Medicine, 11, 389-419, https://www.scirp.org/journal/paperabs.aspx?paperid=100784
[[304]] Szasz A. (2019) Evaluation of clinical studies when no reference arm exists, Oncothermia Journal 27: 174-187, https://www.oncotherm.com/sites/oncotherm/files/2019-10/Evaluation_of_clinical_studies.pdf
[[305]] Vincze Gy, Szasz A. (2019) New look at an old principle: An alternative formulation of the theorem of minimum entropy production, J. Adv. Physics, 16:508-517, https://rajpub.com/index.php/jap/article/view/8516
[[306]] Vincze Gy, Szigeti GyP, Szasz A. (2018) On the Feynman ratchet and the Brownian motor, Open Journal of Biophysics, 2018, 2, 22-30, https://file.scirp.org/pdf/OPEN_J_BIOPHYSICS_2018010914452588.pdf
[[307]] Szasz A, Vincze Gy, Szigeti Gy, Szasz O. (2017) Internal charge redistribution and currents in cancerous lesions, J Adv in Biology, 10(2):2061-2079, http://cirworld.com/index.php/jab/article/view/6328/6283
[[308]] Vincze Gy, Szasz A. (2016) Onsagerian quantum mechanics. Journal of Advances in Physics, 11(6):3353-3373, https://cirworld.com/index.php/jap/article/view/349
[[309]] Vincze Gy, Szasz A. (2015) Nonequilibrium thermodynamic and quantum model of a damped oscillator. In: Mofid Gorji-Bandpy (ed) Recent advances in thermo and fluid dynamics. Chapter 3, In Tech, http://www.intechopen.com/books/recent-advances-in-thermo-and-fluid-dynamics/nonequilibrium-thermodynamic-and-quantum-model-of-a-damped-oscillator
[[310]] Vincze Gy, Szasz A. (2014) Rosen-Chambers variation theory of linearly-damped classic and quantum oscillator. Journal of Advances in Physics 4(1):405-426, https://rajpub.com/index.php/jap/article/view/6966
[[311]] Vincze Gy, Szasz A. (2011) On the extremum properties of thermodynamic steady state in non-linear systems. In Book: Thermodynamics - Interaction Studies - Solids, Liquids and Gases, InTech, Vienna, Austria, http://www.intechopen.com/books/thermodynamics-physical-chemistry-of-aqueous-systems/on-the-extremum-properties-of-thermodynamic-steady-state-in-non-linear-systems
[[312]] Szendro P, Vincze G, Szasz A. (2001) Pink noise behaviour of the bio-systems. Eur Biophys J 30(3):227–231, http://www.ncbi.nlm.nih.gov/pubmed/11508842
[[313]] Szendro P, Vincze G, Szasz A. (2001) Bio-response to White Noise Excitation. Electro- and Magnetobiology 20(2):215-229, http://www.tandfonline.com/doi/abs/10.1081/JBC-100104145?journalCode=iebm19
[[314]] Szasz A. (1991) An electrically driven instability: the living-state (Does the room temperature superconductivity exist?). Physiol Chem Phys Med NMR 23:43–50, http://real.mtak.hu/6379/1/1184363.pdf
[[315]] Joo E, Szasz A, Szendro P. (2006) Metal-framed spectacles and implants and specific absorption rate among adults and children using mobile phones at 900/1800/2100 MHz. Electromagn Biol Med 25(2):103–112, http://www.ncbi.nlm.nih.gov/pubmed/16771299
[[316]] Joo E, Szasz A, Szendro P. (2005) A mobiltelefonokból származó elektromágneses expozíció alakulása 900/1800/2100 MHz frekvencián. Munkavédelem és Biztonságtechnika 17:(1)44-50
[[317]] Joo E, Szendro P, Vincze Gy, Szasz A. (2004) Assessment of electromagnetically treated wheat kernel at 120Hz using the FDTD method. Acta Technologica Agriculturae 7:101-105
Skip to content